Sources of variability in linguistic data:

Methods for analyzing random factors
What causes variability in linguistic data?

- Individuals (speakers, subjects, listeners)
- Words (lexical frequency), non-word items
- Repetitions (phonetics)
- Voices (speakers of stimuli)
- Languages
- Newspapers or authors (corpus research)
- Classes, schools (SLAT research)
Random vs. fixed factors

- Random factors: some things selected randomly from a larger population
- Different from fixed factors (e.g. gender, place of articulation, scope type, …)
- ANOVA and multiple regression are not made to handle random factors, at least not more than one of them
Problem: how many do we have?

- Phonetics, psycholinguistics: usually at least 2 random factors (subjects, items)
- May have more: voices producing stimuli, repetitions, counterbalanced group/order
- Various random factors occur in other kinds of ling. research (e.g. document or newspaper in corpus research, conversation in discourse analysis)
What’s being done about this? 1

- One possibility: ignore the problem!
- Treat each data point (each repetition of each item by each speaker) as a separate, independent data point
- Run ANOVA as if those were separate subjects
- Not good: artificially inflates likelihood of getting a significant result, by a LOT.
- Somewhat common in phonetics, at least in talks.
Toy example: Quené

- Quené & van den Bergh (2004) give a hypothetical dataset with 12 speakers and 3 repetitions in each condition.
- Analyzed as if each repetition were a subject (disaggregated):
 \[F(2,105) = 5.15, p = 0.007 \]
2: By-subjects and by-items

- Average over items and do ANOVA with subjects as the unit of measurement. Then average over subjects and do the same with items. Must be significant on both.
- Standard in psycholinguistics.
- There are problems with this method (see Forster’s work), but it’s standard.
- Phonetics often does just by-subjects.
- What about other random factors???
Same example

- Same data analyzed as by-subjects (averaged over repetitions).

- $F(2,22)=3.58, p=0.045$

- But there's a sphericity violation, when accounted for, $F(1.25,13.75)=3.58, p=.073$
3: \(F' \)

- \(F' \) is calculated from by-subjects and by-items ANOVA
- Corrects the problems of by-subjects and by-items
- But may have low power (things turn out not significant a lot)
- This doesn’t really help for additional random factors
4: Treat random factors as fixed

- If there are only a few item pairs, or only a few languages, or a few towns or schools, these may get treated as a normal, fixed factor in ANOVA.

- Let’s you analyze the effect of these things, but may not be using the right math.

- Are they chosen intentionally, or randomly?
Same example

- Treatment and repetition number both as fixed factors

Treatment: $F(2,22)=6.67$, $p=0.005$

Repetition: $F<1$

Interaction: $F(4,44)=3.47$, $p=0.015$

But what are you going to do with that interaction??
4: Multi-level modelling

- Recent suggestion: multi-level modelling (MLM)
- Related to multiple regression
- Can handle more than 1 random factor at once, in the same analysis
- No need to average over anything
- Same data: **significant with MLM**, no need to correct for sphericity
Claims in favor of MLM

- Quené & van den Bergh (2004) claim MLM is the solution to random factors, and should entirely replace ANOVA for linguistic analysis.
- That’s a drastic thing to advocate!
- Their arguments: handles multiple random factors, has higher power.
Is MLM the solution?

- Gorard (2003) argues against using MLM for educational research
- Things that look like random factors may not always really be (our items are often like this)
- MLM only solves one problem (correlated clumps of data), there are usually others for which it’s no improvement
- Concludes MLM is rarely much help in education research
What should we do?

- Think about sources of variability in language data
- Think about which are fixed and which random, and what information we can get from them
- Keep an eye on methods for dealing with random factors
- Let’s not dispose of ANOVA quite yet!