Statistics in Linguistics Tutorial
Just a sip...

Mike Hammond
Linguistics, U. of Arizona
Overview
Overview

- Are our data categorical?
Overview

- Are our data categorical?
- Typological claims
Overview

- Are our data categorical?
- Typological claims
- Claims about corpora
Overview

- Are our data categorical?
- Typological claims
- Claims about corpora
- An easy appropriate test: χ^2 (Chi-square)
Why do statistics?

Some linguistic facts are categorical:
Why do statistics?

Some linguistic facts are categorical:

- ‘John loves Mary’ is grammatical in English.
Why do statistics?

Some linguistic facts are categorical:

- ‘John loves Mary’ is grammatical in English.
- The past tense of look is looked.
Why do statistics?

Some linguistic facts are categorical:

- ‘John loves Mary’ is grammatical in English.
- The past tense of look is looked.
- The English word for cat is [kæt].
Typological claims
Typological claims

- Subject agreement is more common than object agreement.
Typological claims

- Subject agreement is more common than object agreement.
- Syntactic ergativity is rare, e.g. Dyirbal.
Typological claims

- Subject agreement is more common than object agreement.
- Syntactic ergativity is rare, e.g. Dyirbal.
- The vowel [a] is more frequent than [ü].
Claims about corpora
Claims about corpora

- English disprefers words like [spVp] and [skVk].
Claims about corpora

- English disprefers words like [spVp] and [skVk].
- Active sentences are more common than passive sentences.
Claims about corpora

- English disfavors words like [spVp] and [skVk].
- Active sentences are more common than passive sentences.
- Item x is an exception to generalization y.
How do we know if these are true?

Can we as linguists really make good judgments about what is more or less common?
For example
For example

Is [ü] under-represented in the languages of the world? Imagine we have a sample of 100 languages, and we find this:
For example

Is [ü] under-represented in the languages of the world? Imagine we have a sample of 100 languages, and we find this:

<table>
<thead>
<tr>
<th>with [ü]</th>
<th>without [ü]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>35</td>
<td>65</td>
</tr>
</tbody>
</table>
For example

Is [ü] under-represented in the languages of the world? Imagine we have a sample of 100 languages, and we find this:

<table>
<thead>
<tr>
<th>with [ü]</th>
<th>without [ü]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>35</td>
<td>65</td>
</tr>
</tbody>
</table>

Nothing
For example

Is [ü] under-represented in the languages of the world? Imagine we have a sample of 100 languages, and we find this:

<table>
<thead>
<tr>
<th>with [ü]</th>
<th>without [ü]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>35</td>
<td>65</td>
</tr>
</tbody>
</table>

Nothing

Something
For example

Is \([\ddot{u}]\) under-represented in the languages of the world? Imagine we have a sample of 100 languages, and we find this:

<table>
<thead>
<tr>
<th>with [\ddot{u}]</th>
<th>without [\ddot{u}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>35</td>
<td>65</td>
</tr>
</tbody>
</table>
How a chi-square works

- Intuitively: how likely is it that the observed distribution would occur by chance?

- More formally: \(\chi^2 = \sum \frac{(O-E)^2}{E} \), where
 - \(O = \) observed frequency and
 - \(E = \) expected frequency

- More practically: Perlman ustats, Free R stats program, SPSS on the DASL machines and on the u-cluster, etc.
The moral

- Even orthodox syntacticians, morphologists, and phonologists can make use of statistics.
- Sometimes the required statistical tool can be really simple.