In Proceedings of Natural Language Understanding and Logic Programming (NLULP) 1999, pp. 45-57

Parallel Principle-Based Parsing

Sandiway Fong
NEC Research Institute
4 Independence Way
Princeton NJ, USA

sandiway@research.nj.nec.com

This paper describes a small-scale, coarse-grained parallel Prolog-based
Principles-and-Parameters parser that is derived essentially “for free”,
modulo minor control flow changes, from an existing serial implemen-
tation. The grammar remains unchanged. The system is designed to
operate as efficiently as possible under the severe constraints imposed
by loosely-coupled processors. We demonstrate speed-up results on
such a network using an adaptive task distribution strategy.

1 Introduction

This paper investigates whether significant speed-up can be achieved on a loosely-
coupled, or distributed memory, parallel system for a Prolog principle-based
parser. Due to the very high cost of processor communication, loosely-coupled
systems constitute a particularly severe test. In fact, it is generally difficult to
achieve any speed-up at all with non-trivial applications. [Tho89], for example,
reports no speed-ups only slow-downs with parallel chart parsing. However,
since any cluster of workstations constitutes a loosely-coupled system, such sys-
tems are by far the most commonly available. Using a variety of scheduling
algorithms, we report a very usable 90% and 60% parallel efficiency for two and
four processors on such a network. We stress these results are achieved without
“parallelizing the code”; in fact, without any modifications to the grammar.
The key here is that OR-parallelism requires no processor communication. In
this case, the problem reduces to (1): finding enough parallelism to exploit, and
(2): maintaining load balancing across the network. We analyze the test data
and show that the distribution is highly non-uniform and data- or sentence-
dependent. We describe and compare an adaptive load balancing strategy de-
signed to satisfy (1) and (2) with standard distribution algorithms.

1.1 Principle-Based Parsing

We begin with a modular Prolog-based parser [Fon91] under Government-Binding
(GB) theory, an influential linguistic theory of the 1980s within the Principles-

OThe author gratefully acknowledges the invaluable assistance provided by the following
persons: Robert C. Berwick for his encouragement and for providing testing facilities for the
multiple-processor experiments. Zheng Lin for his expert advice on all aspects of parallel
systems.
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and-Parameters framework [Cho81].! In GB theory, the working hypothesis is
that there exists a universal core grammar contains a small set of non-language-
specific rules or constraints, known as principles, that spell out the possible
phrase structures (PSs). Under this theory, each principle is partially respon-
sible for constraining the space of legal parses for a given sentence. One dis-
tinguishing characteristic of this system (compared with traditional linguistic
descriptions) is that it attempts to account for the apparent surface complexity
of the language phenomenon in terms of a deeper but smaller set of basic rules.
Moreover, principles, in general, are accorded equal status and are not priori-
tized to override or supercede each other.? With few, if any, pre-conditions on
their application, principles are free to interact with one another, and complex-
ity of description is traded for complexity of interaction.

Parametric variation among languages is encoded by a set of language pa-
rameters, or simple boolean values. For example, well-known differences such as
basic subject-object-verb word order, ellipsis of subjects and wh-word fronting
are captured here. Linguistic principles form sub-systems, called modules de-
scribing different aspects of grammar. For example, X-theory describes the
internal structure of phrases and how they are combined into sentences. Trace
theory describes how fronted or scrambled phrases are related to their “origi-
nal” positions. #-theory describes how thematic-roles from heads like verbs are
distributed to their arguments, and Binding theory constrains the distribution
of appropriate antecedents for anaphors and pronouns. (See [Cho86], [LUS8S]
and [vRWS86] for further details.) The PAPPI system uses a single set of approx-
imately thirty principles to handle a range of examples drawn from English,
Japanese, Korean, Dutch, German, French, Spanish, Turkish and Hungarian.
Parsing is carried out by constructing PSs that simultaneously satisfy all the
principles. If there are two or more such PSs, then the input sentence has been
determined to be ambiguous. If the input is ungrammatical, one or more princi-
ples will block. Following the theory, the PAPPI system will look for all possible
derivations for all possible parses. We note here that the problem of finding all
solutions is harder to speed-up than the corresponding problem of finding just
one solution.

If each principle is represented as a separate predicate, a parser is simply
some conjunction of these predicates, see figure 1. Each predicate is classified as
a filter, F;, an operation that rejects incorrect structures, or generator, G;, an
operation that produces one or more structures. Here, G; and G5 will produce
the initial, or underspecified, parse trees and identify the possible movement
configurations, or trace/antecedent pairs, respectively. We assume these two
operations are non-controversially generators, see figure 2. Our experiments
will take place on this coarse-grained OR-parallel model, where each alternative
structure can be farmed out to a different processor.?

1See [New91] for details of the impact of GB theory on the field of theoretical linguistics.

2In the sense that there is no strict order of application. Of course, this does not pre-
clude principles from affecting grammaticality in different ways. For example, the mildly-
unintelligible question Who does Mary wonder why John hit is ruled out by Subjacency, a
principle that governs how far the object of the verb hit, namely who, can be preposed. Con-
trast this with the strongly-ungrammatical sentence John is crucial to see this, a violation of
the Empty Category Principle.

3We note here that fine-grained OR-parallel full Prologs exist for shared-memory MIMD
machines. See the references in the conclusions.
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parse(S) :-
G1(S,PS),
F1(PS),
Fi(PS),
G2(PS,SS),
Fi41(SS),

reportParse(SS),
fail.
parse(). : : : -

Figure 1: The Serial Parser

(1) Gi: Generating basic phrase structure

(i)  John chose the book in the car
(ii) John [yp chose [yp the book [pp in the car]]]
(iii) John [vp [vp chose [yp the book]] in the car]

(2) Ga: Analyzing movement
i)  John wanted to be arrested

(i
(ii)  John wanted [cp,;p PRO; to be arrested t;]
(i) John; wanted [cp,1;r PRO to be arrested ¢;]
(
(

iv) John; wanted [cp/1p t; to be arrested NP-e]

v) John; wanted [cp1p t; tO be arrested ¢;], etc.

Figure 2: Generators G; and Go
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[ Test Data [ n | Sa (s) [ & (5) |
Complete | 333 | 2418 6.26
Tail 10% 33 1874 56.8
Head 90% | 300 | 545 1.8

Figure 3: Parse Times for the Lasnik & Uriagereka Corpus*

1.2 Loosely-Coupled Parallel Systems

As [Tho89] remarks, loosely-coupled systems, namely, systems consisting of pro-
cessors that do not share memory or provide relatively slow access to shared
memory, are more prevalent than the other forms, and therefore worth consid-
ering despite the severe penalty incurred for all non-local memory accesses. In
its most common form, any typical collection of workstations such as a cluster
of Sun Sparcstations on the Ethernet constitutes a loosely-coupled parallel sys-
tem. We will assume precisely such a configuration and report on real parsing
times gathered on 1-8 processor configurations. The recipe for good speed-up
is simple: (1) (virtually) zero communication between processors, and (2) good
load-balancing behaviour. We note here that some parallel Prolog programs,
e.g. N-Queens [Lin92], have a very uniform task distribution. For others, like
the one described here, task distribution strategy will play an important role.

Consider the test data summarized in figure 3. These are grammatical and
ungrammatical examples taken “A Course in GB Syntax” [LUSS|.> Note that
the (serial) parsing time for the worst 10% (about 1 minute) dominates that
of the remaining 90% (under 2 seconds). Here, we will be primarily concerned
with getting good speed-up over the former (our primary test set).

1.3 Previous NLP Work

An extensive literature on context-free grammars and its various subsets exists.
[Nij89] surveys parallelism for the LR, CKY (see also [Haa87] for Unification
Grammars) and Earley algorithms, and [CHK82] gives theoretical upper bounds
for synchronous, bottom-up parsers. Chart parsing has been discussed in [GC88]
and [Tho89]: the two papers reporting widely disparate results attributable
to differences in architecture, namely shared-memory versus loosely-coupled.
Finally, we mention that there are also connectionist approaches. For example,
[S.93] describes a connectionist Principle-based parser.

2 Four Task Distribution Strategies

Good load balancing without communication is possible given uniform task size
Otherwise, explicit load balancing may be required. Hence, it is important to
pay careful attention to the test data. This section begins by examining the
task distribution for the test data introduced above. Next, we introduce four
different strategies and compare their performance on up to eight processors.

4In figure 3, the number of sentences is given by n. Xz (s) and Z (s) are the total and
mean serial parsing time, respectively. All results are for Quintus Prolog 3.1.4/3.2 on a Sun
Sparcstation 10/51.

5In fact, approximately half of the 333 test examples are ill-formed.
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2.1 The Test Data

The test set consists of the worst-performing 10% of the aforementioned [LU88]
corpus in terms of processing time. Both grammatical and ill-formed sentences
are represented. For brevity, the examples in the table in figure 4 are listed
by chapter and sentence number from [LU88] only. (For the actual sentences,
see Appendix A.) Figure 4 summarizes the salient features of each example as
follows:

e Serial parsing time (the basis for comparison).

e Amount of communication required if parse trees are passed between pro-
CEsSOrs.

e The branching factors, b(G1) and b(G2), which limit the degree of paral-
lelism available.

Some general remarks are appropriate here. The opportunity for parallelism
is much higher at G5. However, the advantage of G over G, is by means clear.”
However, the actual task size is also important. Consider the graph in figure 5.
It quantifies how much of the total time can be parallelized as a fraction of the
total (serial) parse time.” Here, the balance is clearly in favour of G;.

2.2 The Naive Master/Slave Model

The idea behind the naive master/slave model shown in figure 6 is quite simple:
have one master processor dedicated to churning out trees which are passed
to slaves for further processing.® Note that the amount of data passed by the
master can be of the order of several megabytes (average being 383Kb), as shown
above in figure 4. To help keep this cost down, our actual implementation also
allows the master to act as a slave when all other slaves are busy, thus avoiding
having to send the tree in this case.

2.3 The Round-Robin and Token-Based Models

The common characteristic of these two models is that they both trade redun-
dant computation for avoiding communication. In a loosely-coupled environ-
ment this has been shown to be an effective strategy [Lin92]. The key idea
being that all processors compute G; (in parallel), thereby having all parse
trees locally available, but then agree upon a plan to divide up the remaining
work, hopefully in a fair manner. This is the essential difference between the
two methods:

6 Also, Size = b(G1) = b(G2) = 0 for some entries. This means that there are no parse
trees, and hence no tasks to distribute. We exclude these entries from our comparison.

"For our purposes, this is 1 — (£(G)/Ts), t(G) being the total time taken before task
distribution.

8The code should be completely obvious. The master executes parse/1 and the slaves
parse2/1. The master maintains a free/busy-slave table. freeProc/1 picks a free processor
from this table and send/2 delivers it to parse2/1 on the slave. We assume that reportParse/1
delivers any parses found back to the master and that free notifies the master that the slave
has finished with the tree.
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Figure 5: Parallelization Fractions for G; and G»

50

Example | Time | Size | b(G1) | b(G2) || Example | Time | Size | b(G1) | b(G2)
(s) (Kb) (s) (Kb)
[1:22] 774 | 75 | 18 96 [6:6d] 1643 | 47 | 8 14
[2:79] 7.81 49 12 146 [6:34] 17.35 65 12 223
[4:50b] | 8.13 | 81 | 16 64 [2:107] | 22.34 | 571 | 16 12
[157b] | 845 | 0 0 0 [1:30d] | 22.46 | 93 | 20 402
[3770b] | 894 | 66 |9 2% B17] | 2385 |19 |3 188
3:71a 9.01 66 9 25 2:88 28.42 152 32 176
6:6¢] 9.31 66 12 48 6:43 35.35 56 8 12
[6:5a] 9.33 24 4 6 [1:85b) 54.78 141 24 694
6:41d] 9.34 57 12 28 6:25 64.81 64 8 47
1:23] 9.55 50 12 146 3:46 70.67 46 6 452
[3:264a] 10.35 | 11 2 141 [6:47] 84.23 3726 | 32 41
1:39d] 10.37 | 53 12 146 2:110 93.95 1258 | 40 571
1:57¢] 10.42 | O 0 0 3:36a 119.55 | 249 15 293
[1:39b) 10.49 | 54 12 146 [3:36b) 120.58 | 249 15 293
3:25] 12.56 | 11 2 175 6:23] 126.57 | 175 10 110
1:57a] 1291 | O 0 0 1:57d] 328.38 | 4579 | 48 410
[3:37] 489.17 | 488 8 7198
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parse(S) :- parse2(PS) :-
G1(S,PS), i (PS),
freeProc(P), .
send(P,PS), F;(PS),
fail. G2 (PS,55),

parse(.). Fi1(S89),

reportParse(SS),
fail.
parse2(.) :- free.

Figure 6: Naive Master/Slave model

parse(S) :-
G1(S,PS),
mod(I,N),
Fi(PS),
F;(PS),
G2(PS,S89),
Fi1(SS),

reportParse(SS),
fail.
parse(.) :- free.

Figure 7: Round-Robin model
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Figure 8: Task Distribution on G; and G2

e Round-Robin: Let ¢ =1,2,3,... index the parses output by G;. Each
processor ist.1 < ¢ < n computes all ¢ satisfying i = ¢ mod n: namely
mod/2 in figure 7 — otherwise identical to figure 1.° No communication is
necessary. However, depending on the input, the static partitioning may
be unfair.

e Token-Based: Substitute beg/0 for mod/2. (See figure 9a.) The idea is
to have each processor “beg” for permission to handle a parse by sending
¢, the index, to a central token server. This server hands out permissions
on an ordered, first-come-first-served basis. We gain run-time load bal-
ancing for the small communication overhead necessary to send indices
only (crucially, not parses).

Is load balancing necessary? The task distribution data in figure 8 suggests that
it really is. Note that the distribution is not only highly non-uniform at G, but
also at G2 where there is more parallelism.

2.4 The Two-Level Token-Based Model

We have the option of distributing tasks at G; or G5. The tradeoff is going to be
between the degree of parallelism and the fraction (of total time) available for
speed-up. As the tests will show, this tradeoff is not justified overall. That is, we
cannot exploit the additional parallelism that G5 has to offer. The 2-Level Token
model attempts to get the best-of-both-worlds by shifting to G2 only when there
is opportunity for speed-up. For example, the parasitic-gap sentence: “Which
report did you file without reading?” has the following peculiar property, namely
b(G1) = 1 and b(G2) = 47. In other words, there is only one initial parse tree
but a high degree of ambiguity in terms of possible trace/antecedent pairs. No
G1-based scheduler can parallelize this example.

The idea is this: add an (initially) inactive beggar to Gs, see figure 9b.
When there are idle processors, but the overall computation has not yet finished,
beg(2) will be switched on. On our parasitic-gap sentence, initially only one
processor will get permission for the single branch. The unsuccessful beggars

9For n = 2, processor 1 and 2 compute the odd and even parses, respectively.
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Time

(a) Single Level Token model

parse(S) :-

parse ()

G1(S,PS),
beg,
i (PS),

F;(PS),
G2 (PS,SS),
Fiy1(SS),

reportParse(SS),
fail.
:— free.

(b) Two Level Token model

parse(S) :-
G1(S,PS),
beg(1),
L (PS),
F;(PS),
G2 (PS,S9),

beg(2),
Fiy1(SS),

reportParse(SS),
fail.
parse(S) :-
restart -> parse(S) ; free.

Figure 9: Two Token Passing Models

Which report did you file without reading?

13
0.9
0.8
0.7
0.6
05
0.4
0.3
0.2
0.1

04

2 4 8
Processors

Thisarticleistoo illogical to read without laughing at
1
0.9

Time

1 2 4 8
Processors

Figure 10: Two Test Cases for the Two-Level Model
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will be restarted (via restart) with beg(2) turned on for all processors.'® A
further optimization, is to detect idle processors before they have completed G .
For example, if there are eight branches, and some processor P begs for branch
3 when branches 3-8 have been allocated (but not necessarily completed), the
token server can suggest that there is no further point in computing any more
branches, but instead to go and beg for one of the as-yet-uncompleted branches.
An excellent example is the sentence: “This article is too illogical to read without
laughing at.” (Incidentally, also the slowest test sentence.) Here, b(G1) = 8,
but b(G2) = 3778 (just) for branch 8. Speed-up results for these two examples
are shown in figure 10.

2.5 General Comparisons

The graphs in figure 11 summarize the results. The first graph provides a
comparison of parallel efficiency. The second graph documents the aggregate
run times for the entire test set.

Here, as is conventional, efficiency E,, is defined as T /(n x T},), the weighted
ratio between single (7T) and multi-processor (7},) parse times. As expected, the
2-level Token model beats out the others, but the gain over the regular Token
model is quite small. The efficiency close to 90% and 60% for the two and
four processors, respectively, is quite respectable. For eight processors, there
is a marked decline, suggesting that we are nearing the maximum amount of
parallelism possible without further partitioning. However, even for this case, as
the second graph shows, there is still a net decrease in the total run time. Finally,
note that the Ga-only versions of the Round-Robin and Token algorithms are
considerably slower than their Gi-only counterparts.

3 Conclusions

We began with the premise that it was easy to exploit multiple processors in
the PAPPI framework. That is, “it comes for free” in the sense that no changes
to the underlying grammar was necessary to exploit a coarse grain OR-parallel
model. On a loosely-coupled system, experiments verified that the major issues
were load balancing and avoiding communication at all costs. We saw that the
underlying test data was highly non-uniform, (perhaps a property present in
other non-trivial AI search applications). Despite this, we were able to achieve
real, but limited speed-ups under small-scale parallelism. For future work, we
note here that any improvements to the LR(1)-based algorithm that implements
G1 would automatically result in an increase in parallel efficiency.

However, we also draw the conclusion that further improvements are unlikely
under the current assumptions given that there are only a very limited num-
ber of realistic low-overhead distribution strategies. An interesting comparison
would be against a fine-grained, OR-parallel Prolog operating on shared-memory
systems as described by [Car90] and [Hau90]. Since support for parallelism is
provided at the Prolog implementation level, referential transparency would be
maintained.

10This is a simplified description. The actual implementation has also to handle the syn-
chronisation problem.
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Figure 11: Comparison of Task Distribution Strategies
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On the one hand, since linear speed-up is generally hard to obtain, it should
be clear that “parallelism” in itself cannot substitute for genuine algorithmic
improvements. However at the same time, linguistic theory continually evolves
at a high rate. So, on the other hand, parallelism is a perfectly valid and
dependable tool for getting real speed-ups without reverting to theory-specific
optimizations that might not survive the next update to linguistic theory. In
other words, parallelism is a practical way to maintain abstraction and modu-
larity.
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A The Test Corpus

Sentences from [LU88| as summarized previously in the table in figure 4:
[1:22] *I am eager John to be here
[2:79] *I believe to be here
[4:50b]  *Who believes the claim that John left why
[1:57b]  *I wonder you think John said who you will see
[3:70b]  ?The man who I wonder whether he will win the race disappeared
[3:71a]  ?The man who you wonder whether he will win the race disappeared
[6:6¢] *T tried it to seem that Bill was intelligent
[6:5a] *The man (that) it is likely to be clever disappeared
[6:41d]  *The belief of John to be clever is illogical
[1:23] I am eager to be here
[3:26a]  The report was filed without being read
[1:39d] *John is wanted to be here
[1:57c]  *I wonder you think who John said you will see
[1:39b]  John is believed to be here
[3:25]  What was filed without being read
[1:57a]  *I wonder you think John said you will see who

[6:6d]  *It is likely it to seem that Bill is intelligent

[6:34] *John tried Bill to seem that he likes

[2:107] They think that it is likely that pictures of each other are on sale
[1:30d] I persuaded the bus to arrive on time

[3:17)]  The report which I filed without reading disappeared

[2:88] *T am proud of my belief to be intelligent

[6:43]  *John; seems that his; belief to be clever is ill founded

[1:85b]  *I tried to be likely that John is here

[6:25] Someone; gave every actress; that he; met a book that she; appreciated
[3:46] *The article which T filed it yesterday without reading is (over) here
[6:47] John;, Mary thinks that John; said that Susan believes I like

[2:110] *They think that it surprised each other that Bill won

[3:36a]  ?The man who I hired because Mary said would work hard disappeared
[3:36b]  *The man who I hired because he said would work hard disappeared
[6:23] Every man; asked some actress; that he; met about some play that she; appeared in
[1:57d] I wonder who you think John said you will see

[3:37] This article is too illogical to read without laughing at



