SANDIWAY FONG

THE COMPUTATIONAL IMPLEMENTATION OF
PRINCIPLE-BASED PARSERS

1.INTRODUCTION

Recently, there has been some interest in the implementation of
grammatical theories based on the principles and parameters approach
(Correa, this volume; Johnson, this volume; Kolb and Thiersch, 1988;
and Stabler, 1991 forthcoming). In this framework, a fixed set of univer-
sal principles parameterized according to particular languages interact
deductively to account for diverse linguistic phenomena. Much of the
work to date has focused on the not inconsiderable task of formaliz-
ing such theories. The primary goal of this chapter is to explore the
computationally relevant properties of this framework. In particular,
we address the hitherto largely unexplored issue of how to organize lin-

guistic principles for efficient processing. More specifically, this chapter

examines if, and how, a parser can reorder principles to avoid doing
unnecessary work. Many important questions exist. For example: (1)
What effect, if any, does principle-ordering have on the amount of work
needed to parse a given sentence? (2) If the effect of principle-ordering
is significant, then are some orderings much better than others? (3) If
80, is it possible to predict (and explain) which ones these are?

By characterizing principles in terms of the purely computational
notions of ‘filters’ and ‘generators’, we show how how principle-ordering
can be utilized to minimize the amount of work performed in the course
of parsing. Basically, some principles, like Move-a (a principle relating
‘gaps’ and ‘fillers’) and Free Indexing (a principle relating referential
items) are ‘generators’ in the sense that they build more hypothesized
output structures than their inputs. Other principles, like the Theta-
criterion (6-criterion) that places restrictions on the assignment of the-
matic relations, the Case filter that requires certain noun phrases to be
marked with abstract Case, and Binding theory constraints, act as filters
and weed-out ill-formed structures.

A novel, logic based parser, the Principle Ordering Parser (called

the PO-PARSER), was built to investigate and demonstrate the effects
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of principle-ordering. The PO-PARSER was deliberately constructed in
a highly modular fashion to allow for maximum flexibility in exploring
alternative orderings of principles. For instance, each principle is repre-
sented separately as an atomic parser operation. A structure is deemed
to be well-formed only if it passes all parser operations. The scheduling
of parser operations is controlled by a dynamic ordering mechanism that
attempts to eliminate unnecessary work by eliminating ill-formed struc-
tures as quickly as possible. (For comparison purposes, the PO-PARSER
also allows the user to turn off the dynamic ordering mechanism and
to parse with a user-specified (fixed) sequence of operations; see the
appendix for examples.)

Although we are primarily interested in exploiting the (abstract)
computational properties of principles to build more efficient parsers,
the PO-PARSER is also designed to be capable of handling a reasonably
wide variety of linguistic phenomena. The system faithfully implements
most of the principles contained in Lasnik and Uriagereka’s (1988) text-
book. That is, the parser makes the same grammaticality judgments
and reports the same violations for ill-formed structures as the refer-
ence text. Some additional theory is also drawn from Chomsky (1981)
and (1986). Parser operations implement principles from Theta theory,
Case theory, Binding theory, subjacency, the Empty Category Principle
(ECP), movement at the level of Logical form as well in overt syntax,
and some Control theory. This enables it to handle diverse phenom-
ena including parasitic gap constructions, strong crossover violations,
passive, raising, and super-raising examples.

9. THE PRINCIPLE ORDERING PROBLEM

This section addresses the issue of how to organize linguistic principles
in the PO-PARSER framework for efficient processing. More precisely,
we discuss the problem of how to order the application of principles to
minimize the amount of ‘work’ that the parser has to perform. We will
explain why certain orderings may be better in this sense than others.
We will also describe heuristics that the PO-PARSER employs in order to
optimize the the ordering of its operations.

But first, is there a significant performance difference between var-
jous orderings? Alternatively, how important an issue is the principle
ordering problem in parsing? An informal experiment was conducted
using the PO-PARSER described in the previous section to provide some
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indication on the magnitude of the problem. Although we were unable to
examine all the possible orderings, it turns out that order-of-magnitude
variations in parsing times could be achieved merely by picking a few
sample orderings.!

2.1. Ezplaining the Variation in Principle Ordering

The variation in parsing times for various principle orderings that we
observed can be explained by assuming that overgeneration is the main
problem, or bottleneck, for parsers such as the PO-PARSER. That is, in
the course of parsing a single sentence, a parser will hypothesize many
different structures. Most of these structures, the ill-formed ones in par-
ticular, will be accounted for by one or more linguistic filters. A sentence
will be deemed acceptable if there exists one or more structures that sat-
isfy every applicable filter. Note that even when parsing grammatical
sentences, overgeneration will produce ill-formed structures that need to
be ruled out. Given that our goal is to minimize the amount of work
performed during the parsing process, we would expect a parse using an
ordering that requires the parser to perform extra work compared with
another ordering to be slower.

Overgeneration implies that we should order the linguistic filters to
eliminate ill-formed structures as quickly as possible. For these struc-
tures, applying any parser operation other than one that rules it out may
be considered as doing extra, or unnecessary, work (modulo any logical
dependencies between principles).? However, in the case of a well-formed
structure, principle ordering cannot improve parser performance. By
definition, a well-formed structure is one that passes all relevant parser
operations. Unlike the case of an ill-formed structure, applying one op-
eration cannot possibly preclude having to apply another.

2.2. Optimal Orderings

Since some orderings perform better than others, a natural question to
ask is: Does there exist a ‘globally’ optimal ordering? The existence of
such an ordering would have important implications for the design of the
control structure of any principle-based parser. The PO-PARSER has a
novel ‘dynamic’ control structure in the sense that it tries to determine
an ordering-efficient strategy for every structure generated. If such a
globally optimal ordering could be found, then we can do away with
the run-time overhead and parser machinery associated with calculating
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individual orderings. That is, we can build an ordering-efficient parser
simply by ‘hardwiring’ the optimal ordering into its control structure.
Unfortunately, no such ordering can exist.

The impossibility of the globally optimal ordering follows directly
from the ‘eliminate unnecessary work’ ethic. Computationally speaking,
an optimal ordering is one that rules out ill-formed structures at the
earliest possible opportunity. A globally optimal ordering would be one
that always ruled out every possible ill-formed structure without doing
any unnecessary work. Consider the following three structures (taken
from Lasnik’s book), where ¢ is a a trace or empty category, bound to
its antecedent as shown by subscripting.

(1) (a)*John; is crucial [cplip #1 to see this ]]
(b)*[wpJohn;’s mother [vp likes himself; ]
(c)xJohn; seems that he; likes

Example (1a) violates the Empty Category Principle (ECP). Hence
the optimal ordering must invoke the ECP operation before any other
operation that it is not dependent on. On the other hand, example (1b)
violates a Binding theory principle, ‘Condition A’. Hence, the optimal
ordering must also invoke Condition A as early as possible. In particu-
lar, given that the two operations are independent, the optimal ordering
must order Condition A before the ECP and vice-versa. Similarly, ex-
ample (1c) demands that the ‘Case Condition on Traces’ operation must
precede the other two operations. Hence a globally optimal ordering is
impossible.

2.3. Heuristics for Principle Ordering

The principle-ordering problem can be viewed as a limited instance of the
well-known conjunct ordering problem (Smith and Genesereth, 1985).
Given a set of conjuncts, we are interested in finding all solutions that
satisfy all the conjuncts simultaneously. The parsing problem is then
to find well-formed structures (i.e., solutions) that satisfy all the parser
operations (i.e., conjuncts) simultaneously. Moreover, we are partic-
ularly interested in minimizing the cost of finding these structures by
reordering the set of parser operations.

This section outlines some of the heuristics used by the PO-PARSER
to determine the minimum cost ordering for a given structure. The
PO-PARSER contains a dynamic ordering mechanism that attempts to
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compute a minimum cost ordering for every phrase structure generated
during the parsing process.® The mechanism can be subdivided into two
distinct phases. First, we will describe how the dynamic ordering mecha-
nism decides which principle is the most likely candidate for eliminating
a given structure. Then, we will explain how it makes use of this in-
formation to reorder parser operation sequences to minimize the total
work performed by the parser.

2.3.1. Predicting Failing Filters

Given any structure, the dynamic ordering mechanism attempts to sat-
isfy the ‘eliminate unnecessary work’ ethic by predicting a ‘failing’ filter
for that structure. More precisely, it will try to predict the principle
that a given structure violates on the basis of the simple structure cues.
Since the ordering mechanism cannot know whether a structure is well-
formed or not, it assumes that all structures are ill-formed and attempts
to predict a failing filter for every structure. In order to minimize the
amount of work involved, the types of cues that the dynamic ordering
mechanism can test for are deliberately limited. Only inexpensive tests
such as whether a category contains certain features (e.g., anaphoric,
tinfinitival, or whether it is a trace or a nonargument) may be used.
Any cues that may require significant computation, such as searching for
an antecedent, are considered to be too expensive. Each structure cue
is then associated with a list of possible failing filters. (Some examples
of the mapping between cues and filters are shown below.) The system
then chooses one of the possible failing filters based on this mapping.*

(2) Structure cue | Possible failing filters
trace Empty Category Principle, and
Case Condition on traces

intransitive Case filter
passive Theta-criterion
Case filter

nonargument | Theta-criterion
-+anaphoric Binding theory Condition A
+pronominal | Binding theory Condition B

The correspondence between each cue and the set of candidate fil-
ters may be systematically derived from the definitions of the relevant
principles. For example, Condition A of the Binding theory deals with
the conditions under which antecedents for anaphoric items, such as
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each other and himself, must appear. Hence, Condition A can only

be a candidate failing filter for structures that contain an item with
the +anaphoric feature. Other correspondences may be somewhat less
direct: for example, the Case filter merely states that all overt noun
phrase must have abstract Case. Now, in the PO-PARSER the conditions
under which a noun phrase may receive abstract Case are defined by two
separate operations, namely, Inherent Case Assignment and Structural
Case Assignment. It turns out that an instance where Structural Case
Assignment will not assign Case is when a verb that normally assigns
Case has passive morphology. Hence, the presence of a passive verb in
a given structure may cause an overt noun phrase to fail to receive Case
during Structural Case Assignment, which in turn may cause the Case
filter to fail.5

The failing filter mechanism can been seen as an approximation to
the cheapest-first heuristic in conjunct ordering problems. It turns out
that if the cheapest conjunct at any given point will reduce the search
space rather than expand it, then it can be shown that the optimal
ordering must contain that conjunct at that point. Obviously, a failing
filter is a ‘cheapest’ operation in the sense that it immediately eliminates
one structure from the set of possible structures under consideration.

Although the dynamic ordering mechanism performs well in many
of the test cases drawn from the reference text, it is by no means fool-
proof (see the appendix for an example). There are also many cases
where the prediction mechanism triggers an unprofitable reordering of
the default order of operations. (We will present one example of this in
the next section.) A more sophisticated prediction scheme, perhaps one
based on more complex cues, could increase the accuracy of the ordering
mechanism. However, we will argue that it is not cost-effective to do so.
The basic reason is that, in general, there is no simple way to determine
whether a given structure will violate a certain principle.® That is, as
far as one can tell, it is difficult to produce a cheap (relative to the cost
of the actual operation itself), but effective approximation to a filter
operation. For example, in Binding theory, it is difficult to determine if
an anaphor and its antecedent satisfies the complex locality restrictions
imposed by Condition A without actually doing some searching for a
binder. Simplifying the locality restrictions is one way of reducing the
cost of approximation, but the very absence of search is the main reason
why the overhead of the present ordering mechanism is relatively small.”
Hence, having more sophisticated cues may provide better approxima-

R

D

6 2okialbls Lol

i

G A b e i

iy




IMPLEMENTATION OF PRINCIPLE-BASED PARSERS 71

tions, but the tradeoff is that the prediction methods may be almost as
expensive as performing the real operations themselves.

2.3.2. Logical Dependencies and Reordering

Given a candidate failing filter, the dynamic ordering mechanism has
to schedule the sequence of parser operations so that the failing filter is
performed as early as possible. Simply moving the failing filter to the
front of the operations queue is not a workable approach for two reasons.

Firstly, simply fronting the failing filter may violate logical depen-
dencies between various parser operations. For example, suppose the
Case filter was chosen to be the failing filter. To create the conditions
under which the Case filter can apply, both Case assignment opera-
tions, namely, Inherent Case Assignment and Structural Case Assign-
ment, must be applied first. Hence, fronting the Case filter will also
be accompanied by the subsequent fronting of both assignment opera-
tions, unless of course they have already been applied to the structure
in question.

Secondly, the failing filter approach does not take into account the
behavior of ‘generator’ operations. A generator may be defined as any
parser operation that always produces one output, and possibly more
than one output, for each input. For example, the operations corre-
sponding to X rules, Move-a, Free Indexing, and LF Movement are the
generators in the PO-PARSER. (Similarly, the operations that we have
previously referred to as ‘filters’ may be characterized as parser opera-
tions that, when given n structures as input, pass n and possibly fewer
than n structures.) Due to logical dependencies, it may be necessary
in some situations to invoke a generator operation before a failure fil-
ter can be applied. For example, the filter Condition A of the Binding
theory is logically dependent on the generator Free Indexing to generate
the possible antecedents for the anaphors in a structure. Consider the
possible binders for the anaphor himself in John thought that Bill saw
himself as shown below: '

(3) (a)*John; thought that Bill; saw himself;

(b) John; thought that Bill; saw himself;
(c)*John; thought that Bill; saw himselfy,

Only in example (3a) is the antecedent close enough to satisfy the
locality restrictions imposed by Condition A. Note that Condition A had
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to be applied a total of three times in the above example in order to show
that there is only one possible antecedent for himself. This situation
arises because of the general tendency of generators to overgenerate.
But this characteristic behavior of generators can greatly magnify the
extra work that the parser does when the dynamic ordering mechanism
picks the wrong failing filter. Consider the ill-formed structure *John
seems that he likes t (a violation of the principle that traces of a noun
phrase cannot receive Case.) If however, Condition B of the Binding
theory is predicted to be the failure filter (on the basis of the structure
cue he), then Condition B will be applied repeatedly to the indexings
generated by the Free Indexing operation. On the other hand, if the
Case Condition on Traces operation was correctly predicted to be the
failing filter, then Free Indexing need not be applied at all. The dynamic
ordering mechanism of the PO-PARSER is designed to be sensitive to the
potential problems caused by selecting a candidate failing filter that is
logically dependent on many generators.®

2.4. Linguistic Filters and Determinism

In this section we describe how the characterization of parser operations
in terms of filters and generators may be exploited further to improve
the performance of the PO-PARSER for some operations. More precisely,
we make use of certain computational properties of linguistic filters to
improve the backtracking behavior of the PO-PARSER. The behavior of
this optimization will turn out to complement that of the ordering selec-
tion procedure quite nicely. That is, the optimization is most effective
in exactly those cases where the selection procedure is least effective.
We hypothesize that linguistic filters, such as the Case filter, Binding
Conditions, ECP, and so on, may be characterized as follows:

(4) Hypothesis: Linguistic filters are side-effect free conditions on
configurations

In terms of parser operations, this means that filters should never
cause structure to be built or attempt to fill in feature slots.® More-
over, computationally speaking, the parser operations corresponding to
linguistic filters should be deterministic. That is, any given structure
sheuld either fail a filter or just pass. A filter operation should never
need to succeed more than once, simply because it is side-effect free.!®
By contrast, operations that we have characterized as generators, such
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as Move-a and Free Indexing, are not deterministic in this sense. That
is, given a structure as input, they may produce one or more structures
as output.

Given the above hypothesis, we can cut down on the amount of work
done by the PO-PARSER by modifying its behavior for filter operations.
Currently, the parser employs a backtracking model of computation.
If a particular parser operation fails, then the default behavior is to
attempt to resatisfy the operation that was called immediately before the
failing operation. In this situation, the PO-PARSER will only attempt to
resatisfy the preceding operation if it happens to be a generator. When
the preceding operation is a filter, then the parser will skip the filter
and, instead, attempt to resatisfy the next most recent operation and so
on.!! For example, consider the following calling sequence:

Y
Y.

F, F;

Gil| - — Go

F

Suppose that a structure generated by generator G passes filters F
and F5, but fails on filter F3. None of the three filters could have been
the cause of the failure by the side-effect free hypothesis. Hence, we can
skip trying to resatisfy any of them and backtrack straight to Gs.

Note that this optimization is just a limited form of dependency-
directed backtracking. Failures are traced directly to the last generator
invoked, thereby skipping over any intervening filters as possible causes
of failure. However, the backtracking behavior is limited in the sense that
the most recent generator may not be the cause of a failure. Consider
the above example again. The failure of F3 need not have been caused by
G. Instead, it could have been caused by structure-building in another
generator further back in the calling sequence, say G;. But the parser
will still try out all the other possibilities in G4 first.

Consider a situation in which the principle selection procedure per-
forms poorly. That is, for a particular ill-formed structure, the selection
procedure will fail to immediately identify a filter that will rule out the
structure. The advantages of the modified mechanism over the default
backtrack scheme will be more pronounced in such situations, especially
if the parser has to try several filters before finding a ‘failing’ filter. By
contrast, the behavior of the modified mechanism will resemble that of
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the strict chronological scheme in situations where the selection proce-
dure performs relatively well (i.e., when a true failing filter is fronted).
In such cases, the advantages, if significant, will be small. (In an informal
comparison between the two schemes using about eighty sentences from
the reference text, only about half the test cases exhibited a noticeable
decrease in parsing time.)

3. CONCLUSIONS: THE UTILITY OF PRINCIPLE-ORDERING

In the framework of the PO-PARSER, dynamic principle-ordering can
provide a significant improvement over any fixed ordering. Speed-ups
varying from three- or four-fold to order-of-magnitude improvements
have been observed in many cases.!? '

The control structure of the PO-PARSER forces linguistic principles
to be applied one at a time. Many other machine architectures are
certainly possible. For example, we could take advantage of the inde-
pendence of many principles and apply principles in parallel whenever
possible. However, any improvement in parsing performance would come
at the expense of violating the minimum (unnecessary) work ethic. Lazy
evaluation of principles is yet another alternative. However, principle-
ordering would still be an important consideration for efficient processing
in this case. Finally, we should also consider principle-ordering from the
viewpoint of scalability. The experience from building prototypes of the
PO-PARSER suggests that as the level of sophistication of the parser in-
creases (both in terms of the number and complexity of individual prin-
ciples), the effect of principle-ordering also becomes more pronounced.

APPENDIX
Ezamples of Parsing Using the PO-PARSER

This section contains some examples of parsing using the implemented
system. The ‘core’ portion of the PO-PARSER, consisting of a lexicon,
various principle definitions, and a bottom-up X-parsing machine, is
written entirely in Prolog. The principle-ordering mechanism and user-
interface portions are independently written in Lisp. The complete sys-
tem runs on a Symbolics 3650 workstation.

The following snapshot shows the result of parsing the ambiguous
sentence John believes that Mary likes him. Since the parser recovers all
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possible parses, it returns two parses, one for the case where John and
him are interpreted as being coreferential, and the other when him is
coreferential with a third person, not named in this sentence.

Princioie-Ordering Parser

| Examples Tracing Toolkit “Options Failures Orderings Refresh Quit
_Output Filters
[JExample: John belleves that mary likes him [3,pg307 1
Thete Critecion
Structure passes all cperations 1
[ Jnhn] E [] [ ( beHeves][ [ :huc][ [ nar‘y] [ [ 'ers][ hin] ]]]1]]1] 2
c2 C 12N e 111t vy 2 Case Ftiter
P (index _8) apos (case nom) (theta agent) (a =) (p =) (re +) (agr () ((59)) (M) 2
11 (index _B) (past =) (agr ((D)) ((sg W) ((n f M) (hop (past =)) (hop (agr ((1)) ((sg m) {n £ ) Case Condition
Vi (past =) (agr ((L)) ((sg m)) ((n f m)) (rorph believe s) (grid agent (pm!nm}) (ecn oblig) 2
NP1 (index _1) apos (case nom) (theta agent) (a =) (p =) (rc +) (agr ((L) ((sgd)) ((M] 2
11 (Index 1) (past =) (agr ((t3) ((sg M) ((n f n))) (hop (past =)) (hop Cagr ((V)) <(sg m) (n T M) Condttion A
Vi (past -3 (agr (D) ((s9 M) <(n £ m)) (norph like 5) (grid agent (patien 2
NP (index _2) apos compl (case (theta patient) (norphc acc) (a =) (p +) (re ) Cagr (()) ((3g)) ((N)) >
2 Condition 8
Etwcmf‘e[ passes all operations: ¢ ¢ J[ ] ]]]]]]]] 3
[99] ohn] [ (1 [ b=1|=v=s][ [ that] E oo 1 C (1 likes: h1n
[czc IZNPJ et e E [ YTyt 2 Conaitian &
1P: (index _8) apos (case nom) (theta agent) (a =) (p =) (rc +) (agr ((W)) ((xg)) ((M)) 12
[ (index _8) (past =) (agr ((®)) ((sg W) (v f M))) (hop (past =)) (hop (agr ((L)) ((sg M) ((a ¢ Mm))) 1 Realtzre PF
Vi (past =3 Cagr (() (Csg M) ((n £ m)) (rorph believe 5) (grid agent (proposition) (ecn oblig)
IP1 (index _1) apos (case nom) (theta agent) (a =) (p =) (ra +) (agr () (s} (KN)) 2
1t Cindex l) (past =) (agr ((%)) ((39 M) ((n F r))) (hop (past =)) (hop (agr ((W)) ((sg M) ((n f n)))) ECP
s (past. =) (agr ((1)) ((sg M) ((m f mM)) (norph like ) (grid agent (patient)) - 2
1P1 (index _8) apos compl (case acc) (theta patient) (norphc ac) (a =) (p #) (re #) (agr (D) ((s@d) (W) Beneraiors

No (nore) parses Parse PF

Parse X-8ar

Thete Role Assignment

lnherent Case Assignneat

[y =
el =] LU R Rl

Nave Ripha

Structural Case Resignaent

[N

Free Indexing

SIS PO

Colndex Subject & INFL

(In the second structure, the pronoun him has the same index, 0, as
John. For the first parse, the pronoun is given a separate index, 2.) The
list of parser operations on the right-hand-side of the screen provides
useful statistics on the execution of the parse. (The panel is also used
to provide an ‘animated’ display of the behavior of the system during
parsing. The box surrounding each principle briefly ‘lashes’ each time
the principle is invoked.) There are two numbers associated with each
parser operation. The top number records how many times that oper-
ation was invoked during parsing. The bottom number indicates how
many times the operation succeeded. For example, we can immediately
trace the source of the referential ambiguity to the free indexation op-
eration, because it is the only generator that produced two structures
from one input. (As we will show later, the numbers will also serve to
identify the failing principle in cases of ungrammatical input.)

The PO-PARSER allows the user to experiment with various orderings.
The following snapshot shows three distinct orderings: '
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[Static Orderings

Parse PF Parse PF Parse PF ]

[ [ [
[ Parse X-Bar [ Parse X-Bar [ Parse X-Bar |
| Hove Ripha | Hove Aipha [ nove A1} Reorder Operations
[ Realize PF ] [ inerent case nxsigrment | [ Free Inaf Parse PF
Parse X-Bar
[ 1neta more ] Case [cotndex sunse Pove i’\\zha.
4 Free Indexing
[ Theta Criterion ][ Case Filter ] [ Condit1 Coindex Subject & INFL
[ Free Indexing ][ Free Indexing ] [ conattil  Condition
[coindex subject & 1L | [ Cotndex Subgect & 1L | [ Conditid Eg:g:;’:g: E
L bbb I Cisiabitadi 11 21 Theta Role Assignment.
[[3nherent case Assignment | [ Condition 8 ] Inberent Case | Theta Criterion
bituntel 1 r N I I Structural Case IRﬁP?;;zeingase Assignment
i = i Cane FI (S:bruchrall‘ Case Assignment
ase
Condition B ] Case Condition [ Case Conc} Case Filter
[

Condition C [ theta Rol« Assionment Theta Role A Abort Done

[
B Case Filtaer
[
[
[
[

]
ECP [ Theta Criterion ] Theta Crit
]

Case Condition [ Realize PF [ Realize PF |

Each list of parser operations is just a permutation of the panel of
operations shown in the previous snapshot. Each list should read in a
‘top-down’ fashion, that is, the topmost operation will be executed first,
the operation immediately below the topmost will be executed next, and
so on, down to the bottom operation. The leftmost list is the default
ordering used in the previous example. In this session, we have created
two alternative permutations as test orderings.

The pop-up menu shown above, allows the user to arbitrarily reorder
parser operations, simply by ‘moving’ each operation around. (The sys-
tem also keeps track of logical dependencies between the various opera-
tions, hence, it will prevent the construction of ill-formed orderings, for
example, Inherent Case Assignment is never allowed to ‘follow’ the Case
filter.) For the purposes of the next example, the position of the Case
filter in the list will be the salient difference between the middle and
the rightmost orderings. That is, the Case filter appears as ‘early’ as
possible in the middle, and as ‘late’ as possible in the rightmost ordering
(as shown in the pop-up menu).

The following snapshot shows the result of running the parser using
the rightmost ordering on the ungrammatical example *It was arrested
John:
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Principle-Ordering Parser

“Examples Tracing Toolkit Options Fallures Orderings Refresh Quit
Qutput Filters

JExample: *It was arrested John [45,p8177 Cal 5

NHo (more) parses Theta Criterion

-

Case Filter

Case Condition

Condition A

Comdition 8

Condition &

Realize PF

&em

o nle el ol ofo ole -

Generators

Parse PF

Parse X-Sar

Theta Rale Assignment

Inherent Case Restgnment

o wfe =l el oo e

fove Rlpha

-

Structural Case Rssignment

Free Indexing

[N FNN)

Cotadex Subject & 1NFL

Of course, the system returns no parses for this ungrammatical sen-
tence. Note that the statistics collected for the Case filter indicates that
it was the failing filter in this case. (Every other operation succeeded
at least once, only the Case filter failed to pass a single structure.) The
important to note about this diagram, is that every operation listed was
‘exercised’ at least once. The next snapshot shows the result of parsing
the same sentence, but using the middle ordering instead:
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Principle-Ordering Parser

Examples Tracing Toolkit Options Failures Orderings Refresh Quit
Dutput Filters
xample: *It was arrested John [45,p817] Ca|

o (more) parses Theta Criterion

Case Ftiter

Case Candition

Condition &

Conditton &

Condition C

Realize PF =

&cP

Generators

Parse PF

Parse X-3ar

o ol -

Thets Role Assignment

Inherent Case Assignment

Hove Alpha

rnin oin o

Structural Case Aseignnent

.

Free Indexing

Colndex Subject & I1NFL

As before, the system returns no parses. (Of course, variations in
ordering cannot affect the logic of the parser. That is, the parses pro-
duced in each case must be the same.) However, in this case the parser
achieves the same result, but with much less work. That is, the ungram-
matical sentence has been ruled out as early as possible. Observe that
the statistics indicate that many fewer parser operations were invoked
in this case.

Finally, the user can also allow the system to pick its own ordering
via the dynamic ordering mechanism. The following snapshot shows the
result of parsing the same example using dynamic ordering:
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Principle-Ordering Parser

Examples Tracing Toolkit Options Failures Orderings Refresh Quit
utput L. .. Filters
"Fi'ﬂgrp'te: #1tf was driested John 145,pg17} Ca
Theta Criterion
Features: (NONARG PASSIVE (A =) (P =)), Votes: (Theta Criterton Theta Criterion Case Filter) 1
Advancing failure filter Thata Criterion 1
New ordering: (Theta Role Assignment Theta Critsrion Nove Alpha Realize FF Free Indexing Case Filter

Coindex Subject & INFL Condition A Inherant Case Assignment Structural Case Assignment
Case Filter Condition 8 Condition C ECP Lase Condition)

Case Condition

Features: (NONARG PASSIVE (A -) (P -)), Votes: (Theta Criterion Theta Criterion Case Filter)

Advancing failure filter Cass Filter

Mew ordering: (Realize PF Inherant Case Assignment Structural Lase Assignment Case Filter
Coindex Subjact & INFL Condition A Condition B Condition & ECP Case Condition)

Condition A&

Features: ((A -) (P -) PASSIVE NONARG), Votes: (Thets Criterion Case Filter Theta Critertom Candition &

Advancing fallure filter Theta Criterion

New ordering: (Theta Role Assignnent Theta Criterion Move Alpha Realize PF Free Indexing Congttion &
Coindex Subject & INFL Gondition A Inherent lase Assignment Structural fase Assignnent
Case Filter Condition 8 Condition € ECP Lase Condition) .

No (nmore) parses Realize PE

EcP

Generators

Parse PF

Parse X-8ar

Theta Rale Assignnent

Innerent Cage Restgnnent

ftave Righs

il el o o ol -

Structursl Case Assignment

-

Free Indexing

Cotndex Subject & INFL

The snapshot also contains information about any choices that the
ordering mechanism made during execution. In this situation, the rel-
evant structure cues are NONARG (from the nonargument it) and PAS-
SIVE (from was arrested). Since a nonargument cannot be assigned a
theta-role, this suggests that the Theta-criterion may be the failing fil-
ter. Similarly, the presence of the passive element prevents arrested from
assigning Case to its complement (John), which suggests the Case fil-
ter as the failing filter. The passive element also prevents the external
theta-role of arrested from being assigned to the noun phrase in subject
position (it). Hence, there will be a total of two ‘votes’ for the Theta-
criterion and one for the Case filter. Thus, the ordering mechanism will
pick the Theta-criterion as the most likely failing filter, and reorder the
operations accordingly. Actually, it turns out, for the structure under
consideration, that the Theta-criterion was not the optimal choice. The
ordering mechanism then reevaluates its choice, and collects votes in the
same fashion as before. The outcome of the voting is unchanged, but
the Theta-criterion has already been applied. Hence, the system picks
the Case filter as the most likely failing filter (the correct choice) on the
second attempt.
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NOTES

! The PO-PARSER has about twelve to sixteen parser operations. Given a set
of one dozen operations, there are about 500 million different ways to order these
operations. Fortunately, only about half a million of these are actually valid, due
to logical dependencies between the various operations. However, this is still far too
many to test exhaustively. Instead, only a few well-chosen orderings were tested on
a number of sentences from the reference. The procedure involved choosing a default
sequence of operations and ‘scrambling’ the sequence by moving operations as far
as possible from their original positions (modulo any logical dependencies between
operations).

2 In the PO-PARSER for example, the Case filter operation (that requires that all
overt noun phrases have abstract Case assigned) is dependent on both the inherent
and structural Case assignment operations. That is, in any valid ordering the filter
must be preceded by both operations.

3 In their paper, Smith and Genesereth drew a distinction between ‘static’ and ‘dy-
namic’ ordering strategies. In static strategies, the conjuncts are first ordered, and
then solved in the order presented. By contrast, in dynamic strategies the cho-
sen ordering may be revised between solving individual conjuncts. Currently, the
PO-PARSER employs a dynamic strategy. The ordering mechanism computes an
ordering based on certain features of each structure to be processed. The ordering
may be revised after certain operations (e.g., movement) that modify the structure
in question.

4 Obviously, there are many ways to implement such a selection procedure. Cur-
rently, the PO-PARSER uses a voting scheme based on the frequency of cues. The
(unproven) underlying assumption is that the probability of a filter being a failing
filter increases with the number of occurrences of its associated cues in a given struc-
ture. For example, the more traces there are in a structure, the more likely it is that
one of them will violate some filter applicable to traces, such as the Empty Category
Principle (ECP).

5 It is possible to automate the process of finding structure cues simply by inspecting
the closure of the definitions of each filter and all dependent operations. One method
of deriving cues is to collect the negation of all conditions involving category fea-
tures. For example, if an operation contains the condition ‘not (Item has_feature
intransitive)’, then we can take the presence of an intransitive item as a possible
reason for failure of that operation. However, this approach has the potential problem
of generating too many cues. Although, it may be relatively inexpensive to test each
individual cue, a large number of cues will significantly increase the overhead of the
ordering mechanism. Furthermore, it turns out that not all cues are equally useful in
predicting failure filters. One solution may be to use ‘weights’ to rank the predictive
utility of each cue with respect to each filter. Then an adaptive algorithm could
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be used to ‘learn’ the weighting values, in a manner reminiscent of Samuel (1967).
The failure filter prediction process could then automatically eliminate testing for
relatively unimportant cues. This approach is currently being investigated.

6 If such a scheme can be found, then it can effectively replace the definition of the
principle itself.

7 We ignore the additional cost of reordering the sequence of operations once a failing
filter has been predicted. The actual reordering can be made relatively inexpensive
using various tricks. For example, it is possible to ‘cache’ or compute (offline) common
cases of re-ordering a default sequence with respect to various failing filters, thus
reducing the cost of reordering to that of a simple look-up.

8 Obviously, there are many different ways to accomplish this. One method is to
compute the ‘distance’ of potential failure filters from the current state of the parser
in terms of the number of generators yet to be applied. Then the failing filter will be
chosen on the basis of some combination of structure cues and generator distance.
Currently, the PO-PARSER uses a slightly different and cheaper scheme. The failure
filter is chosen solely on the basis of structure cues. However, the fronting mechanism
is restricted so that the chosen filter can only move a limited number of positions
ahead of its original position. The original operation sequence is designed such that
the distance of the filter from the front of the sequence is roughly proportional to the
number of (outstanding) operations that the filter is dependent on.

9 So far, we have not encountered any linguistic filters that require either structure
building or feature assignment. Operations such as #-role and Case assignment are
not considered filters in the sense of the definition given in the previous section. In
the PO-PARSER, these operations will never fail. However, definitions that involve
some element of ‘modality’ are potentially problematic. For example, Chomsky’s
definition of an Accessible Subject, a definition relevant to the principles of Binding -
theory, contains the following phrase ‘... assignment to a of the indez of § would
not violate the (i-within-i) filter *[y;...6;...]". A transparent implementation of such a
definition would seem to require some manipulation of indices. However, Lasnik and
Uriagereka (1988, p. 58) point out that there exists an empirically indistinguishable
version of Accessible Subject without the element of modality present in Chomsky’s
version.

10 Tt turns out that there are situations where a filter operation (although side-effect
free) could succeed more than once. For example, the linguistic filter known as the
‘Empty Category Principle’ (ECP) implies that all traces must be ‘properly gov-
erned’. A trace may satisfy proper government by being either ‘lexically governed’ or
‘antecedent governed’. Now consider the structure [cp Whaty did you [vp read t1]].
The trace t; is both lexically governed (by the verb read) and antecedent governed
(by its antecedent what). In the PO-PARSER the ECP operation can succeed twice
for cases such as t; above.

11 This behavior can be easily simulated using the ‘cut’ predicate in Prolog. We can
route all calls to filter operations through a predicate that calls the filter and then
cuts off all internal choice points. (For independent reasons, the PO-PARSER. does
not actually use this approach.)

12 Obviously, the speedup obtained will depend on the number of principles present
in the system and the degree of ‘fine-tuning’ of the failure filter selection criteria.
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