Natural Language Understanding and Logic Programming, Il
C. Brown and G. Koch (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1991 43

Principle-Based Parsing and Type Inference
Sandiway Fong?

Artificial Intelligence Laboratory, MIT, 545 Technology Sq. NE43-810
Cambridge MA 02139 USA. E-mail: sandiway@ai.mit.edu

Abstract

In principle-based parsing, the two basic operations are phrase structure con-
struction and the application of well-formedness conditions that implement linguistic
principles. In the interleaved model of execution, principles are applied to partially con-
structed phrase structures as they are built. By introducing the notion of the type of
a principle, we show how type inference rules defined over logic programs can be used
as a basis for a practical model of interleaving. We describe an off-line procedure for
the automatic interleaving of principles defined by logic programs. An attractive feature
of the implemented procedure is that it is automatic in the sense that it is completely
transparent to principle definitions.

1 INTRODUCTION
1.1 THE INTERLEAVED MODEL OF EXECUTION

Recently, there has been some interest in parsing strategies for principle-based parsers,
e.g. Crocker (3], Fong [4], Johnson [6], Macias [9] and Stabler [11] [12]. In principles-
and-parameters theories of syntax, knowledge of grammar is mostly encoded using a
set of linguistic ‘principles’: i.e. well-formedness conditions that phrase structures must
satisfy. Phrase structures are, in turn, generated by a small set of simple context-free
(CF) grammar rules in accordance with the restrictive principles of X-theory.

In general, we can use a wide variety of different parsing strategies for these theories.
' For example, perhaps the most obvious strategy is to simply enumerate the possible
phrase structures for a given sentence, and then ‘weed-out’ those that are ill-formed by
applying each well-formedness condition, or principle, in turn. Then, only those phrase
structures that satisfy all well-formedness conditions can be said to be parses of the
given sentence. Note that in such a scheme, there is a strict separation between phrase

structure construction and principle application. That is, phrase structure for a complete :

!Support for this work has been provided in part by a research assistant award and in part by
NSF Grant No. DCR-85552543 under a Presidential Young Investigator Award to Professor Robert C.
Berwick.

44 S. Fong

sentence will be built before it is tested for well-formedness. An alternative strategy may
be based on the observation that we need not wait until phrase structure construction
is complete before applying certain principles. That is, many principles exhibit locality
of reference in the sense that may apply only to certain sub-structures within a given
phrase structure. (We discuss such an example immediately below.) Hence, we can take
advantage of this by ‘mixing’, or interleaving, principle application with phrase structure
construction as individual phrases are built. The motivating principle here is that if
some sub-structure is found to be ill-formed, then any complete structure built from that
sub-structure will also be ill-formed. For example, the sentence John saw he is ill-formed
— cf. the well-formed sentence John saw him. In fact, the verb phrase corresponding to
saw he is ill-formed no matter what elements precede or follow it. For example, Mary
believes John saw he, John saw he win, and I thought that Mary believed John saw he are
all ill-formed sentences. The problem here is that Case assignment, a principle of Case
theory, states that verbs such as see assign accusative Case to noun phrase elements in
object position such as he. Therefore, the Case conflict can be discovered by applying the
principle of Case assignment as soon as the object of see has been identified. Hence, it
would seem to make sense, computationally speaking, to favour the interleaved over the
non-interleaved approach described earlier.? In this paper, we will consider the efficient
implementation of the interleaved model.

1.2 OVERVIEW OF THE APPROACH
1.2.1 The Naive Polling Model

Perhaps the obvious (and general) method for interleaved execution is to simply try
to apply each principle every time some structure is built. We will call this the naive
polling model. Unfortunately, this is an impractical model because of the relatively high
overhead of ‘polling’ constituents. The reason why polling is expensive comes from the
general observation that many linguistic principles are fairly restrictive about the range
of configurations that they apply to. In other words, many principles have the following
structure: “for all constituents X such that X satisfies some property P, then some prop-
erty Q must hold or else some addition (or modification) R must be made to constituent
structure.” For example, let us consider the principle of Case assignment that was intro-
‘duced in the previous section. The principle basically states that: “for all configurations
of Case assignment X, assign Case to an appropriate noun phrase in X.” However, the
basic problem here is that it may take a considerable amount of computation to identify
and retrieve the relevant components of a Case configuration. For example, we will need
to find an element to assign Case, we will also need to find a corresponding element to re-
ceive Case, and finally, we will need to check that these two elements bear the appropriate
structural relation to each other. But since these requirements are fairly restrictive, most
constituents will fail at one of three points mentioned. However, this repeated evaluation
of the pre-conditions will result in a high overhead above the amount of computation
required to process those configurations that turn out to be Case configurations. (A

2We do not address the performance tradeoffs between the two approaches here. Actually, for reasons
beyond the scope of this paper, it is not clear that the interleaved approach is always better. See Fong [5]
for an explanation.

Principle-Based Parsing 45

more concrete example of a principle along these lines may be found in the definition of
§-role-assignment to be discussed in section 2.3.)

Note however that, unless we exhaustively test each structure, we run the risk of
either failing to rule out an ill-formed structure or causing a well-formed structure to
be ruled out (by failing to assign Case.) In other words, non-exhaustive testing would
constitute an unsound implementation of the (relativized) universal quantifier. Of course,
if certain classes of structures that never satisfy the pre-conditions of a given principle
can be identified and eliminated from consideration (on an off-line basis), this can lead
to a substantial reduction in the number of (unsuccessful) tests necessary at parse-time.
In the next section, we will outline an improved model that will only need to selectively
poll partially-constructed phrase structures.

1.2.2 The Revised Model

Basically, the idea will be to cut the overhead by using information about the range of
possible phrases that the pre-conditions of a principle may apply to. For instance, if we
can determine that a certain pre-condition only applied to, say, noun, verb and adjectival
phrases; then we can safely eliminate polling, say, of all adverbial phrases. Of course,
the problem is how to extract this categorial information simply by inspecting the logic
definition of a principle. Roughly speaking, a type will be a set that represents the range
of category labels associated with a configuration. A type inference mechanism that
operates over logic definitions will used to compute type values. Before proceeding with
the revised model, we will first briefly sketch some of the design goals of the larger parsing
system that will provide an idea of the limitations and tradeoffs necessary in the type
computation mechanism. (For the complete details, the reader is referred to Fong [5]).

The question of how to represent linguistic principles is one of the most important
issues for principle-based parsing. That is, how should we formally represent the natural
language, or semi-formal, definitions that are commonly found in the linguistics litera-
ture? Of course, it will be generally desirable to use a representation such as logic with a
structure and a vocabulary that is ‘close’ to the notation used by linguists for reasons of
perspicuity, ease of theory maintenance, and to ensure correctness of representation.® At
the same time, for practical reasons, it will also be desirable to have efficiently executable
definitions, or at least, definitions that can be transformed into efficient definitions.* In
the current system, an attempt has been made to abstract principle definitions away from
control issues such as the question of non-interleaved versus interleaved execution. The
basic idea here being that it should be possible for the grammar writer to specify princi-
ples in a manner that is both neutral and transparent with respect to such issues. In the
current system, the fact that types are computed when principles are to be interleaved is
completely transparent to the grammar writer. (However, the grammar writer is free to
explore different control options independently of the representation.) To achieve this, a
type inference mechanism must have the following properties:

3For example, see Stabler’s [11] account of a full 1st-order axiomatization of Chomsky’s Barriers [1]
framework.)
*For examples of other logic-based proposals along these lines, see Johnson [6] and Stabler [12].

46 S. Fong

1. The type inference mechanism must be automatic in the sense that it should com-
pute types solely from a principle definition without having to solicit extra infor-
mation from, or be volunteered by, the user, e.g. in the form of type specifications
as program annotations. This also implies that the mechanism must be capable of
degrading gracefully in cases where there is insufficient information to determine a
particular type. In the current system, no annotations are allowed.

2. The off-line interleaving process must preserve soundness. For example, as dis-
cussed earlier, type computation must never cause the parser to (erroneously) fail
to impose a well-formedness condition on an ill-formed structure.

3. Finally, of course, the inference mechanism must always halt. As will be discussed
in a subsequent section, this is a potential problem with the type relations to be
defined, given the ‘multiple-pass’ nature of the implementation.

Although, type inference must be sound, it need not be complete (in a sense to be made
clear below), in order to retain transparency. Suppose T is the smallest possible sound
type for a configuration X, i.e. for every category c in T, there exists a constituent of
category c that satisfies the conditions of X. Now, suppose a type T' computed for X
by an inference algorithm is strictly larger than T in the sense that T' C T’. Then, we
say that the algorithm is incomplete (but still sound) since it has failed to determine
the (minimal) type of X. To make the point clearer, we can say that the original naive
polling algorithm is equivalent to the revised system with a type inference algorithm that
always returns the set of all possible category labels of the (linguistic) theory; that is,
the algorithm is effectively failing to compute any meaningful type. (We will denote the
set of all possible category labels, i.e. the universal type, by U.) The algorithm that we
will describe in this paper will automatically substitute U for any part of the principle
definition that a type inference fails to apply. As the section on inference rules will
describe, this is usually not ‘fatal’. In fact, this default substitution allows the inference

algorithm to degrade gracefully by computing a strictly larger type but remaining sound.

1.3 ROADMAP

The remainder of this paper consists of three sections. To begin, we will review a typical
theory in the principles-and-parameters framework. We will also take the opportunity
to provide an example of how linguistic principles may be written using clauses in logic.
Next, we will introduce the notion of a type of a principle, and define type inference rules
that operate over primitive linguistic relations and logic programs. We will apply these
rules to the example principle mentioned above to illustrate how the type computation
is actually carried out. Finally, we will discuss the limitations and tradeoffs found in the
implemented procedure.

2 THE LINGUISTICS FRAMEWORK

In this section, we review the components of a typical theory in principles-and-
parameters framework. The goals of this section will be twofold: first, to introduce the

i

R sl

s

s

W i

Principle-Based Parsing 47

D-structure: X-rules
l Move-a
S-structure

Phonological Ruiy LF Movement

Phonetic Form Logical Form

Figure 1 A standard model of phrase structure.

X - Spec(X), X .
e.g. X=N, Spec(N)=NP [N[NP the Vandals|[N destruction of the city])

X=N, Spec(N)=Det [N[Det the][N destruction of the city]]

X— X, Compl(X)

e.g. X=N, Compl(N)=NP [N destruction [NP of the city]]
X=V, Compl(V)=NP [V destroyed [NP the city]
X=A, Compl(A)=NP [A proud [NP of the city]]
X=P, Compl(P)=NP [P to [NP the city]]

Figure 2 Examples of X-rules.

notion of a linguistic principle, and secondly, to provide a non-trivial and linguistically-
relevant example that will be used to illustrate type computation. (Readers familiar
with the framework may wish to skip directly to the formalization of 0-role-assignment
in section 2.3.)

A typical theory such as that of Chomsky [2] may be divided into two components.
First, the phrase structure (PS) component consists of several levels of PS representation
related by rules of movement as shown in figure 1. The levels of Phonetic Form and
Logical Form form the interface of syntax to external systems that produce speech and
interpret language, respectively. However, for the purpose of this paper, we will be
primarily concerned with principles that apply to the other two (theory-internal) levels
of PS representation, namely, D- and S-structure. ‘

2.1 PHRASE STRUCTURE

The level of D-structure may be generated by simple CF rules including those shown
in figure 2.° The two-bar system shown partitions phrases into three levels: a ‘double-

bar’ level, or mazimal projection, denoted by X(=XP), that corresponds to the traditional

5We have omitted the rules that are necessary to handle empty categories and adjunction structures
at D-structure. For example, NP —) is required to handle passive and parasitic gap constructions, as in
[[NP-€][VP was arrested John]] and you file which report without [NP-¢] reading [NP-¢]. Also, non-X-rules
such as VP — VP Adv and NP — NP CP are required to handle wh-adverb questions, e.g. John [VP[VP
leave][4dv why]], and relative clause constructions, e.g. [NP[NP the man][CP who I sau]], respectively.

48 S. Fong

notion of a complete phrase; a ‘single-bar’ level, or intermediate projection; and, finally,
a ‘zeroth-bar’ level, or head projection, that corresponds to the level of individual lexical
items. As the examples show, the X-rule schema expresses both the uniformity of PS
across the four lexical categories N,V,A and P, and the fact that heads, i.e. zero-bar-
level constituents, largely determine the internal structure of a phrase. The specifier
and complement positions, represented by Spec(X) and Compl(X), respectively, are the
positions normally occupied by subjects and objects.® The bar-level system also extends
to the two non-lexical categories, inflection (I) and complementizer (C). For example, IP
represents the traditional clause (S), as in:

(1) [IP[NP John][T saw Mary])

Here, the subject of the clause, John, is assumed to occupy the specifier position of IP.
Similarly, CP represents the traditional full clause (S), as in:

(2) [CPINP who[C did[IP John see]]]

This last clause is actually an example of PS at the level of S-structure, not D-structure.
Now, S-structure is derived from D-structure by the iterated, possibly null, application
of the operation of Move-a that allows syntactic constituents to move freely. The idea
here being that principles will rule out all cases of improper movement, leaving only
those that are well-formed. (We will return to an example of such a principle presently.)
For example, let us consider the sentence who did John see again. Here, we understand
the object of the verb see to be somehow associated with the NP who. In the standard
analysis, (2) is assumed to be derived from the D-structure representation:

(3) [IP John[VPV see][NP who]]]

This establishes the connection between who and the ob ject of see, i.e. “the person
that John sees.” The object who, then moves to the clause-initial position found in the
S-structure (2). The object position vacated by who is filled at S-structure by a trace
of movement. By convention, the trace and its antecedent will be coindezed, as shown
below:

(4) [CP[NP whol,[C did[IP John see [NP-4]]]

2.2 LINGUISTIC PRINCIPLES

The other component of the theory is a set of linguistics principles that are conveniently
grouped into modules of grammar such as Case, §-, Control, Trace, and X- theories, each
of which deals with a different aspect of syntax. Let us now briefly review some of these
modules. We have already seen the effects of some of these in the previous sections.
The requirement that traces and antecedents be automatically coindexed falls under the
province of Trace theory. Similarly, X-theory governs the structure of the PS rule system

8For convenience, the order of the right side elements of the X-rules will match the constituent order of
the examples shown. Note however, that the actual constituent order will be irrelevant to the definitions
used in the paper. That is, we will make use of the hierarchical, but not the precedence, information
present in the PS representation.

Principle-Based Parsing 49

outlined in the previous section. The principles of Case theory deal with the assignment
and conditions on the proper distribution of abstract Case. (Case is abstract in the sense
that it need not be morphologically realized.) We have already encountered an example
John saw *he/him, in which assigned Case is morphologically realized. In general, Case
is only assigned in certain configurations. For example, subjects normally only receive
Case in tensed, but not untensed, clauses. For example, John receives Case in John is
sad, but not in *John to be sad. The ill-formedness of the latter example is explained
by the Case filter, a principle of Case theory that requires all overt noun phrases to bear
Case.

Case theory will also interact with Move-a. For example, consider the sentence John
seems to be sad, an example of a ‘raising’ construction. Here, John is understood to
be associated with the subject of sad in the same sense as who was associated with the
object of see in (4) above. Hence, the underlying D-structure for the raising construction
will be [IP[NP-¢][VP seems[IP[NP John][VP be sad]]]]. Since the matrix clause is tensed,
but not the clausal complement of seems, John must move to the matrix sub ject position
presently occupied by [NP-e], an empty NP, in order not to violate the Case filter. (Note
that the case where no movement takes place, i.e. *it seemns John to be sad, is ill-formed.)
A similar situation occurs with ‘passive’ constructions such as [NP John]; was arrested
t;. Here, the noun phrase John will be assigned Case by virtue of occupying the subject
position of a tensed clause. (The corresponding non-movement case *it was arrested
John is ill-formed because, unlike the corresponding active case, the object of a passive
predicate does not receive Case.)

Movement also interacts with Binding theory, a module that deals with the coreference
possibilities for anaphors, pronominals, and referential-expressions such as names. For
example, Binding conditions tell us that the pronoun ke in the sentence who that John
knows does he like may be interpreted either as being coreferential with John, i.e. he
and John ‘denote’ the same individual, or free in the sense that ke is not coreferential
with any person named in the sentence. These same conditions can also tell us that the
former interpretation is unavailable for the similar sentence he likes everyone that John
knows. That is, he must be free in this case. The critical difference between the two
examples is one of movement. Although John is part of the object of like at D-structure
in both cases; in the former case, the object who that John knows has been moved to a
clause-initial position.

This completes the high-level description of some of the principles that a typical
principle-based parser will implement. We now turn to a more detailed review of some
of the principles of #-theory. In particular, we will describe the conditions of -role-
assignment in some detail to provide a example of how principles in the framework may
be formalized in logic. The formal definition obtained here will also be used to illustrate
the type construction algorithm in a later section.

2.3 FORMALIZING THE CONDITIONS OF 6-ROLE ASSIGNMENT

The module of §-theory is concerned with the proper distribution of semantic, or thematic,
roles. For example, consider the sentence: :

(5) the police arrested John

50 S. Fong

Here, the police and John are considered to bear the thematic roles of ‘agent’ and “patient’,
or ‘theme’, of the predicate arrest, respectively. In syntax, these relations are established
by having a lexical head such as the verb arrest (which has an ‘agent’ and a ‘theme’
f-role), assign its 6-roles to, i.e. #-mark, the subject and object positions, respectively.
Now, the fundamental principle of §-theory is the f-criterion, a two-part condition which
ensures that f-roles are properly discharged to arguments; roughly speaking, syntactic
elements that have a referential function. Here is a typical definition of the é-criterion
(from Lasnik & Uriagereka [7]):

(6) 8-Criterion:
a. Every argument must be assigned a 6-role.
b. Every f-role must be assigned to an argument.

For example, the f-criterion rules out the following ill-formed examples:

(7) a. *the police arrested John Bill
b. *the police arrested
c. *there arrested John
d. *there arrested

In (7a), (6a) is violated since Bill is an argument without a #-role. Here, the theme #-role
1s assigned to John, and the agent role to the police. In (7b), no argument is available
to bear the theme #-role; and in (7c), the agent role is assigned to a non-argument, the
pleonastic element there. In both cases, (6b) is violated. Finally, (7d) violates both sides
of the #-criterion.

The (Extended) Projection Principle requires that the #-criterion must hold at all
syntactic levels, i.e. at D-structure, S-structure and LF. For example, one consequence
is that movement from a f-position (a position to which no 6-role is assigned) to a §-
position is prohibited, as in *John; mentioned that t; rains — cf. John mentioned that it
rains where no movement of a noun phrase has taken place.

To apply the #-criterion, we have to first assign #-roles. In general, internal 6-roles
will be assigned to complement positions, e.g. the ‘theme’ #-role of arrest, and ezternal
f-roles will be assigned to subject positions, e.g. the agent 6-role of arrest. Following
Chomsky [2], the possible cases of §-marking are:

1. Lexical heads §-mark their complements.

We have already seen the case when the head is a verb. Nouns also §-mark their
complements. For example, consider figure 2 again. Here, the nominal form de-
struction assigns the same (internal) theme 6-tole to the city in the configuration
[N destruction|[NP of the city]] that destroy assigns in [V destroyed] [NP the city]).
Similarly, the adjective proud 6-marks the pronoun ke in [A proud NP of him]], and
the preposition to assigns a destination #-role in [P to[NP the city]]. Note that some
heads such as the verbs persuade and ask, as in [V persuaded[NP John][CP that he
should leave]] and [V asked[NP John)[CP to leave]], may assign two or more internal
roles. Others such as sleep take no objects and therefore have no internal roles to
assign.

Principle-Based Parsing 51

Let X and Y be constituents, and let Fx be the feature set associated with X.
Let L be an arbitrary list, F' an instantiated feature, and c a category label.

Primitive Operations

cat(X,c) holds if c is the category label of X.

X complement_of Y holds if X occupies a complement position in phrase Y.

X has_constituent ¥ holds if Y is an immediate sub-constituent of X.

X has_constituent_head Y holds if Y is an immediate sub-constituent of and heads X.
X has_constituents L holds if L represents all the immediate sub-constituents of X.
X has_feature F holds if F € Fy.

X specifier_of Y holds if X occupies the specifier position in phrase Y.

Universal Quantification Form

<Operation-Name> in_all_configurations <Variable>
where <Pre-conditions-1> then <Conditions-1>
else <Pre-conditions-2> then <Conditions-2>...

Figure 3 Linguistic primitives and a universal quantification form.

2. Verbs that possess an ezternal §-role will §-mark their subject.

For example, the verb hit will assign an ‘agent’ f-role to John in [IP[NP John][VP
hit Bill]]. Note that in some cases, a verb may combine with an internal predicate to
f-mark the subject. For example, in John is crazy, the argument John is indirectly
f-marked by the adjective crazy.

3. Nouns that possess an external f-role (optionally) #-mark the subject position of
the noun phrase that they head.

Consider the two noun phrases shown in (8) (taken from Chomsky [2]):

(8) a. Bill’s fear of John
b. the fear of John

In (8a), Bill receives same f-role ‘experiencer’ that it receives in Bill fears John,
but in (8b) the corresponding 6-role is not assigned.

In the following discussion, we will make use of the linguistically-motivated primitives
shown in figure 3. Two kinds of primitives are listed here: some such as complement_of
and specifier_of represent basic notions defined by X-theory. Other primitives such as
has_constituent and has_feature are general relations on PS representation. We will
assume that all constituents have associated feature sets, and that features are inherited
according to X-projections, so that the features of a head with category X will be available
at all other levels, X and X. Finally, we will also assume the existence of a universal
quantification form in.all configurations that may be used to express (arbitrary)
conditions on phrase structures. (The semantics of this form will be explained presently.)

52 S. Fong

thRoleAssign in_all_configurations CF where
thetaConfig(CF,Roles,Els) then assignRoles(Roles,Els).

thetaConfig(CF, [Role|Rs],Complements) :-% Case 1: [Xi X Complements]
CF has_feature grid(_,[RolelRs]),
CF has_constituents L,
CF has_constituent_head Head,

pick(Head,L,Complements) . % List op: pick out Head from L
% leaving Complements.
thetaConfig(IP, [Role], [NPSpec]) :- % Case 2: [IP Spec [I1 I VP]]
cat(IP,ip),

VP complement_of IP,
extRoleToAssign(VP,Role),
NPSpec specifier_of IP.

thetaConfig(NP,Roles,Args) :- % Case 3: [NP Spec [N1 N ..]]
cat(¥P,np),
NP has_constituent NPSpec,
cat(NPSpec,np),
NP has_feature grid([Rolel,_),
optionalThRole(Role,NPSpec,Roles,Args).

optionalThRole(Role,Arg, [Rolel, [Argl). % Commit to assigning the role.
optionalThRole(Role,Arg,[1,[1). % Omit assigning the role.

Figure 4 The definition of §-role-assignment.

The configurations of §-marking are summarized using the predicate thetaConfig
shown in figure 4. (For convenience, we adopt standard PROLOG syntax for this and all
subsequent definitions.) Here, CF is a §-configuration with two components: (1) a list of
the f-roles to be assigned, and (2) a list of the constituents to receive the #-roles. Note
that the thematic representation of a head, the #-grid, is encoded using a lexical feature
grid(L1,L2), where the lists L1 and L2 hold the external and internal §-roles of the head,
respectively. For example, arrest would have the feature grid([agent], [theme]).

The translation from each f-configuration case described above to the formal definition
in terms of the PS primitives provided is relatively straightforward. Let us briefly review
the first thetaConfig clause. This clause is designed to extract the two components of a
6-configuration if CF is a configuration where a lexical head would #-mark its complements.
In general, CF need only be the smallest constituent containing both components.” This.

"It is not strictly necessary to pick the smallest configuration; in fact, the definition could be written
to accept any arbitrary element containing both components. But, the reason for preferring the smallest
lies in the bottom-up nature of the algorithm that builds structure. Recall that, in the interleaved model,
we would like to be able to apply principles as early as possible. By defining the #-configuration to be

Principle-Based Parsing 53

% NB: assignRoles/2 will be defined in terms of assignRole/2
assignRole(Role,Argument) :- Argument has_feature theta(Role).

Figure 5 Assigning a 6-role to an argument.

occurs when the head and its complements are both immediate constituents of CF. The
identification of this condition is performed by the last three conjuncts of the clause.
The first conjunct is there to make sure that the head has at least one 6-role to assign.
For example, this would rule out [VP[V sleeps]] as a potential case of head—complement
f-marking. (Note that here we make use of the inheritance of features to examine the
f-grid associated with the head.) The definition of the other cases proceeds in a similar
fashion. Finally, the operation of §-role-assignment itself is formalized by universally
quantifying over the configurations of phrase structure. The definition shown is meant
to be read as follows:

“In all configurations named by CF such that CF is a #-configuration with
components Roles and Els; then assign the #-roles Roles to elements Els.”

The actual assignment of -roles to constituents is carried out by assignRoles. Con-
stituents will contain #-slots that will be represented as a complex feature theta(S),
where S will hold the actual §-role. Hence, assignment simply boils down to unifying a
§-slot with a given f-role, as shown in figure 5. (Here, to keep the definition short, we
only illustrate the case for a single 6-role and constituent.?)

The issue of the high overhead involved in repeated evaluation of the pre-conditions
of a principle can be seen clearly in this definition. The cost of determining the 6-
configurations is by far the most expensive part of applying the principle. As we have
seen, the conditions under which #-marking takes place are quite restricted. Hence, a
large majority of constituents that are constructed should fail to satisfy the predicate
thetaConfig. But, given that there are three clauses to test and that several conjuncts
of the clauses may succeed in the course of testing, each failure can be quite expensive.
By comparison, the amount of additional work required to actually assign the f-roles,
once the appropriate components of the configuration have been determined, is small.

the smallest possible constituent, we can apply 6-role-assignment as soon as the relevant components
have been found.

8The implementation of assignRoles is a little more complicated for two reasons: (1) In general,
-grid roles are unordered. For example, verbs such as give have two internal 6-roles that may permute
freely in syntax, as in gave John a book and gave a book to John. (2) Also, 6-roles may have several
syntactic realizations. For example, following Chomsky [2], persuade select a goal and a proposition as
internal #-roles. A proposition may be realized as either as a noun phrase or a clause, as in persuaded [NP
John)[CP that he should leave] or persuaded [NP John][NP of the importance of leaving]; but a goal may
only be realized as a noun phrase. Note however, that although 6-roles are unordered, principles may
apply to exclude ungrammatical permutations. For example, *persuaded [CP that he should leave][NP
John] is ruled out by the Case adjacency requirement which is present in English. That is, a noun phrase
must be adjacent to its Case assigner in order to receive structural Case.

54 S. Fong

3 TYPE INFERENCE

In this section, we will formally define the notion of a type together with type equations for
linguistic primitives and type inference rules over logic programs. Next, we will illustrate
the process of type computation on the definition of §-role-assignment introduced in the
previous section. We will also take the opportunity to discuss the features and limitations
of the implemented type computation algorithm.

3.1 TYPE DEFINITIONS
We begin by defining the possible category labels:

Definition 1 (Category labels)

Let L be the set of X-theory head category labels,i.e. {N,V,A,P,I,C}. Let L' be the
set of non-X category labels, e.g. {Adv, Det}. Now, let proj denote the X “projects to”
relation. That is, let ¢ proj € and € proj € hold, for ¢ € L. Then, let proj* be the reflexive
transitive closure of proj. Finally, let V denote the (finite) set of all possible category
labels, i.e. {c'| ¢ proj*c’,forc € L} U L'.

We can now define the notion of a type in terms of category labels:

Definition 2 (Type)
A type is simply a member of 2¥. In particular, let U, the universal type, be the largest
member of this set,i.e. V.

In a logic program, types will be associated with logical variables that represent con-
stituents. We will use the expression X : T to represent a constituent variable X
with associated type T. We will now define some of the type equations associated with
linguistically-motivated primitives such as those in figure 3.

Definition 3 (Category labelling)
Given a constituent X and a category label c:
cat(X:T,c) holds =

T = {c} if c is a category label, or

T = typeValue(c) if ¢ is uninstantiated.

For example, consider [Defn. 3] which defines the type of its first argument as follows:®

1. When c is instantiated to some label, say NP, as in “cat (X ,NP),” we can immedi-
ately determine that X can only range over constituents with that label — for our
example, we say that the type of X is {NP}.

2. On the other hand, ¢ may be left uninstantiated: for example, we might write
“cat(X,C), head(C)” to state that X must be a head. Here, the type of X
cannot be determined solely from “cat(X,C).” In general, if ‘typeValue(C)’ is

9Note that these type definition rules are transparent to the user. However, if the grammar writer
wishes to incorporate a new primitive relation involving constituents, then a corresponding type definition
should be written — although one is not strictly necessary, that is, the inference algorithm will still
function, albeit, less effectively.

Principle-Based Parsing b5

returned, the inference algorithm will interpret it to mean that should make a
second pass through the predicate in which cat(X,C) occurs to find other literals
that involve C' and compute all possible values of C where feasible.l® In this case,
head is a simple primitive of X-theory that holds only for categories N, V, A, P, I,
and C. Hence, the type of X will become {N,V,4,P, I,C}.

The lexicon can also play a part in type determination. Consider [Defn. 4] which applies
to the feature membership primitive:

Definition 4 (Feature membership)
Given a constituent X and an instantiated feature F. Let E and Fg be a lexical entry
and its feature set:
X :T has_feature F holds =
T = {c| 3 E of category ¢’ st. F € Fg,c proj*c}
when F' is a lexical feature, else
T = typeValue(F) if F has a given type, otherwise
T=U.

For example, if only verbs and adjectives may be exceptional case markers (ECM), and
“X has_feature ecm” holds, then we can infer (assuming feature inheritance) that X
must have type (or be a sub-subset of) {V, V, VP, A, X, AP}. This is captured by the
first type equation. The second equation applies to non-lexical features that are assigned
independently of the lexicon, but have type definitions specified. Finally, the last equation
introduces the universal type U. This applies as a ‘catch-all’ for all features not handled
by the earlier type equations. (In fact, unless otherwise stated, type U will be the default
type assigned whenever no type equation applies.)

Next, to conclude our examples of primitive relations, [Defn. 5] illustrates the notion
of a type relation: ‘

Definition 5 (Head relation)
Given two constituents X and Y:
Y : Ty head.of X: Tx holds =
Tx = {c| ¢ proj*c, for each ¢’ € Ty},
Ty = {c| head(c), ¢ proj*c for each ¢’ € Tx}

head_of holds if the first constituent is the head of the second. In this case, two type
equations, one for each argument, are defined in terms of the type of the other.

We now move on to examples of type composition rules for logic programs. In the
following definitions, a simple formula F may be an atom. If F; and F, are simple
formulas than so are: (\+F}), (Fy,F}), (Fy; F;). For example, [Defn. 6] defines how types

may be composed for conjunction ¢,’:

10The conditions under which typeValue(C) causes partial evaluation of a literal are too detailed
to cover here. In this case, the predicate head is defined by the clauses “head(a) head(n) head(v)
...head(c).” The algorithm detects that head is defined using ground unit clauses, from which it can
collect values for C without going into an infinite loop.

56 S. Fong

Definition 6 (Conjunction) Given simple formulas F} and Fj:

X: T]_(Fl), X: Tz(Fz)
X: T1 n Tg(Fl,Fz)

This inference rule has the following interpretation: “if X has type Ty in F3, and X also
has type T; in F, then X has type T; intersect T in the conjunction of F, and F,.”
Although, strictly speaking, Horn clauses do not have disjunctions in the body of the
clause, (see Lloyd [8]); it is both simple and convenient to allow the corresponding rule
for disjuncts:

Definition 7 (Disjunction) Given goals F; and F:

X: Tl(Fl), X: Tg(Fz)
X: Tl U Tz(Fl;Fg)

The type rule for predicate definition is quite similar to that for disjunction, except, of
course, for the variable substitutions:

Definition 8 (Predicate Definition) .

Let predicate P be defined by n clauses of the form A;:-F;, 1<1i<n, where 4; and
F; are atoms and simple formulas, respectively. Let A be an atom and let o; be a most
general unifying substitution for A; wrt. A. Then:

Vist. Jdo;st. A = Ao, X Ti(A;:-F})o;
X:U; ﬂ(A)

Finally, we conclude the series of type definitions with a brief discussion of negation \+

(as failure):

Definition 9 (Negation)
X:T(F)
X:U(\+F)

Note that X has type U after negation, irrespective of its original type. This is a conser-
vative rule which essentially provides no type information. Note however, that exceptions
are defined for certain goals. For example,the primitive has_feature [Defn. 4] is an ex-
ample where type information is not deleted across negation:

Definition 10 (Negation and feature membership) ,
Given a constituent X and an instantiated feature F. Let E and Fgz be a lexical entry
and its feature set:
\+ X : T has_feature F holds =
T = {c| 3E of category ¢’ st. F & Fg, ¢ proj*c} if F is a lexical feature, else
T =U —T" where T' = typeValue(F) if F has given type, otherwise
T=U.

Principle-Based Parsing 57

3.2 TYPE COMPUTATION

In this section, we will present an example of type computation using f-role-assignment,
as defined in section 2.3. Let us consider again the clauses for thetaConfig shown
previously in figure 4.

1. The first clause encodes the case of head—complement #-marking. For this to occur,
the head must have a #-grid with one or more internal f-roles. This is encoded
by the first conjunct “CF has_feature grid(-, [RolelRs]).” The type inference
algorithm will consult the type rule [Defn. 4]. According to this rule the algorithm
must consult the lexicon to find all categories ¢’ that have one (or more) lexical
entries with a #-grid containing one or more internal arguments. We have that such
entries exist for categories N, V, A and P only: for instance, see the examples shown
on page 8. Then, the type of CF is determined as the set of labels ¢ such that c is
zero or more projections of ¢’. Hence, CF has type constrained by {N,N,NP,V,V,VP,
AA,AP,P P PP}.

Not all the primitives have associated type equations. For example, there is no
equation for the second conjunct “CF has_constituents L.” The list operation
used in the fourth conjunct pickis a generic predicate that has no special linguistic
significance. Hence, CF is given type U in both cases.

However, the third conjunct, namely “CF has_constituent_head Head,” specifies
that CF immediate dominates its head; in other words, CF must be a single-bar

Using the type rule for conjuncts, we intersect each type instance to obtain {N, V,

i, F).

2. The second and third clauses encode two cases of external f-role assignment: a
noun assigning its external f-role to its NP specifier, and the subject of IP being
assigned an external #-role, either directly or indirectly, via the VP predicate. In
both cases, by applying the type rule for category labelling [Defn. 3], CF will be
immediately restricted to a singleton set, {NP} in the former and {IP} in the latter
case. Note that the algorithm will still try to explore the other conjuncts present
in both clauses.!

Finally, using the type rule for predicate definition [Defn. 8] together with the pre-
condition in assignThRoles, we can infer that the type of thConfig is the union of
the types computed for each of the three clauses: that is, {N, NP, V, &, P, IP}. Note that
this type is obviously much smaller than the universal type. Although not all structures
that have its category labelled as one of these type components, e.g. [V[V sleep]] is not a
f-configuration as mentioned before, we have safely and automatically eliminated much
of the unnecessary overhead incurred by the naive polling model.

Let us extend this example one step further to illustrate the capability of the inference
procedure to trace a number of different type variables. In general, the evaluation of

"ncidentally, if the empty type for a definition is ever returned, then that definition can never succeed.
Although, we have argued for the transparency of the type inference procedure, this is perhaps one case
in which debugging information can and should be conveyed to the grammar writer.

58 S. Fong

inCaseAssign in_all_conf igurations CF
where inCaseConfig(CF,Case,Items)
then assignInherentCase(Case,Items).

inCaseConfig(CF,Case,Items) :-
thetaConfig(CF,_,Items),
Head head_of CF,
cat(Head,C),
inherentCaseAssigner(C,Case).

inherentCaseAssigner(n,gen) .
inherentCaseAssigner(a,gen).
inherentCaseAssigner(p, obqg).

Figure 6 A definition of inherent Case assignment.

type relations may require the algorithm to make ‘multiple-passes’ through principle
definitions. We have already seen one example of this, namely “cat(X,C), head(C) -
in which, the computation of the type of X will require the computation of the possible
values for the type value C. In the current implementation, this is done by making a
separate pass for each such unknown. A more sophisticated example can be found in the
fragment shown in figure 6. This example is taken from the definition of inherent Case
assignment, an assignment operation that operates on a proper subset of §-configurations.
The additional restriction here being that the head must be an inherent Case assigner.

By using the type rule for the head_of primitive [Defn. 5], the algorithm can infer
that the type of CF is related to the type of Head. Therefore, by switching to computing
the type of Head, the algorithm may be able impose further constraints on the type of CF.
By using rule [Defn. 3] on the atom “cat (Head,C),” we can infer that the type of Head
is given by the set of possible values for C. Switching once more to compute the values
of C, we can follow the definition of inherentCaseAssigner to obtain C = {N, A,P}.
By plugging these values back into the type equation for head_of, CF is constrained to
be { N,N,NP,A,A,AP,P.P.PP}. Finally, we know that CF has type {N, NP, V, &, P, IP} in
thetaConfig, so by type intersection, we have that inherent Case assignment has type
{N, NP, &,P}.

Although, type relations allow the algorithm to infer the type of one variable in terms
of another, as illustrated by in the preceding example; unfortunately, this also allows
circularity in a chain of type inferences to occur. Perhaps, the simplest example occurs
in the definition of head_of where the type of the first argument is defined in terms
of the second, and vice-versa. Currently, the adopted solution is to keep track of the
names of the variables being traced, and to terminate the search as soon as a previously
encountered variable has been detected. Then, type computation will be resumed with
the universal type substituted for all outstanding type variables. This system can be
extended to cope with looping caused by recursive predicates by treating a recursive
call as if the system switched to computing a new type variable. For example, this will

At e

Principle-Based Parsing 59

prevent the algorithm from looping on p(...,X,...) :- p(...,X,...), where X is the
constituent variable being traced. This rudimentary loop detection scheme seems to be
sufficient to guarantee termination, but at the cost of generality.!?

4 CONCLUSIONS

We have described a procedure that takes logical definitions of linguistic principles and
extracts categorial information that can be used to efficiently guide the interleaved
model of parsing. The procedure relies on type definitions being present for the vari-
ous linguistically-motivated primitives. An implementation of the procedure has been
tested and found to work well on the twenty to thirty principles that are used in the
PP-PARSER (described in Fong [5]). Automatic type inference is practical in this context
because the principle definitions make considerable use of the linguistic primitives for
which type definitions exist. In general, we can probably rely on the grammar writer to
make use of the supplied primitives. Hence, the type computation process usually has
access to enough type information so that the universal type may be avoided. Morc-
over, since the ‘grammar programming language’ in this case is fairly simple, we have
not needed to deal with the complexities introduced, say, by data type polymorphism or
coercion — features that exist in general programming languages, e.g. see Milner [10].
These two factors conspire to make the type computation problem simple enough to be
practical for use in principle-based parsers.

References

[1] Chomsky, N.A. “Barriers.” M.I.T. Press. 1986.

(2] Chomsky, N.A. “Knowledge of Language: Its Nature, Origin, and Use.” Prager.
1986.

[3] Crocker, M.W. “A Principle-Based System for Syntactic Analysis,” (m.s.) 1989.

[4] Fong, S. & R.C. Berwick “The Computational Implementation of Principle-Based
Parsers,” International Workshop on Parsing Technologies. Carnegie Mellon Univer-
sity. 1989.

[5] Fong, S. “Computational Properties of Principle-Based Grammatical Theories,”
Ph.D thesis. Dept. of Electrical Engineering and Computer Science, M.I.T. (forth-
coming).

[6] Johnson, M. “Use of the Knowledge of Language,” Journal of Psycholinguistic Re-
search. 18(1). 1989. :

2]t is easy to construct an example to show the limitations of the loop detection scheme. For exam-
Ple, consider the following (artificial) definition of a principle p: p(0,X) :- cat(X,np). p(1,X) :-
p(0,X). The loop detection algorithm will prematurely abort the type computation process in the case
of the goal p(1,X).

60 S. Fong
[7] Lasnik, H. & J. Uriagereka A Course in GB Syntax: Lectures on Binding and Empty
Categories. 1988. M.I.T. Press.
(8] Lloyd, J.W. “Foundations of Logic Programming,” 2nd Ed., Springer Verlag. 1987.
(9] Macias, B. “Government-Binding Theory and Parsing as Deduction.” (m.s.) 1989.

[10] Milner, R. “A Theory of Type Polymorphism in Programming,” Journal of Computer
and System Sciences. 17, 348-375. 1978.

[11] Stabler, E.P., Jr. “The Logical Approach to Syntax: Foundations, Specifications
and Implementations of Theories of Government and Binding.” (m.s.) M.LT. Press.
1989.

(12] Stabler, E.P., Jr. “Avoid the Pedestrian’s Paradox,” (m.s.) 1990.

