In Linguistics and Computation 103
Eds. Cole, J. et al. Lecture Notes 52, CSLI 1995

A Quarter Century of Computation
with Transformational Grammar

Robert C. Berwick and Sandiway Fong

MIT Artificial Intelligence Laboratory
NEC Research Institute, Inc.

1 Introduction: plus ¢a change..

It seems altogether fitting that a historical celebration of a linguistics de-
partment should focus on a bit of history: the history of computation and
generative grammar, in particular the history of how computer models of
transformationally-based linguistic theories had changed radically, espe-
cially recently, to solve computational problems that had haunted them
for at least a quarter century. In this article, we would like to show how
the promised transparent computational implementations of transforma-
tional generative grammar — which made brief appearances in the middle
1960s along with similarly transparent incarnations in psycholinguistic and
acquisition models, and then which gave way, in most cases rapidly, to al-
ternative models or “nontransparent” replacements — can now, at long last,
be said to have arrived. We can now build efficient parsers for transforma-
tional grammar, in its very latest incarnations, and reap all the benefits:
transparent coverage of entire linguistic textbooks, top to bottom—one
can write Case Assignment or the Empty Category Principle nearly as it
appears in a textbook; no special treatment of so-called ungrammatical sen-
tences; easy experimentation and exploration of alternative theory-internal
changes; and simple parameter switching to get multlple languages and a
better story about language acquisition.

At the same time, we would also like to emphasize the historical conti-
nuity of the project—that the transformational generative grammar (TGG)
implementations of today face the same problems of overgeneration, con-
straints, abstraction, arbitrary empty strings, and the like that had to be
faced in the 60s. However, we can now at least realize some of the hopes
of the earliest researchers of the 60s: we can build a complete, efficient
computer implementation, a parser, for the most recent versions of TGG,
using an abstract language built on top of PROLOG that remains as close
as can be expected to the English (or Italian, or German, ...) one finds in
linguistic texts.

The question that naturally arises is: why now? Why does TGG parsing
work now, and not 25 years ago (the MITRE project (Zwicky et al. 1965),

104 Linguistics and Computation

Friedman (1971), or Petrick (1965) systems)? The answer is two-fold. First,
we just know more about linguistic representations, and that constrains the
system: the Structure Preservation Hypothesis and constraints on landing
sites limit the possibilities for inferring moved elements; deletion is more
restricted (though infinite regress in adjunction still comes back to haunt
us); X-bar theory limits the possibilities for phrase structures and lexical
insertion; there are no ordered rules; and so forth. Second, we know more
about computation. We can build efficient structural parsers that build the
initial scaffolding (like the covering grammars of the 1960s), via multiple-
entry type-inference LR machines. The most important trick in all of this is
in using the notion of language abstraction: the abstract language stating
the linguistic theory is automatically transformed via specially-built (but
otherwise standard) compilers, into a form the user never sees, that does
the actual work and bridges the gap between the abstract representation
and efficient execution. In this regard the system is no different from any
other programming language, or indeed from many other computational
linguistic formalisms. (It is an open question as to whether we could take
our updated technology and show that the older theory could have been
implemented this way as well—we see no reason in principle why it could
not, but for the improvements in the Structure Preservation Hypothesis,
bounding deletion, and the like.)

The end result is that computation and TGG went through a U-shaped
roller-coaster ride of transparency or faithfulness to the textual rendering
of the theory (like the ups-and-downs of a classic learning curve): the initial
(“rose”) period of the 60s, when researchers tried to build systems where
one actually wrote down structural descriptions, structural changes, the fac-
torization of the rules, etc., ordered them, mimicking Syntactic Structures
or Aspects exactly as one can see from the Petrick or Friedman system
examples; followed by the middle (“blue”) period of the 70s, when this
transparency was cast aside in favor of rule systems that respected the rep-
resentational descriptions and constraints of TGG (S-structure, etc.), but
only relatively indirectly (for instance, the Marcus parser); to the current
proposal, which is again deliberately transparent.

The implemented system we outline is ambitious: it attempts to in-
corporate essentially all of Lasnik and Uriagereka’s A course in GB theory
(Lasnik and Uriagereka 1989, henceforth LU). All of the theory in Chapters
1-4 of LU have been implemented. Chapter 5 of LU, covering alternatives
to “classical” Binding Theory such as Aoun’s Generalized Binding Theory,
have not been implemented. Of the open questions posed in Chapter 6 of
LU, we have adopted the prohibition against Case-marking of NP traces,
and genitive Case realization to bar illicit NP movement. Certain other
changes have been made in the interests of consistency or efficient compu-

Transformational Grammar 105

tation, for instance, the use of erasable features as a substitute for gamma
marking; we discuss some of these matters as they arise. (For a full descrip-
tion of the implemented theory, see Fong 1991, and Fong and Berwick 1992.)
The parser incorporates a current (parameterized) X-bar theory of ten basic
structures and 20 adjunct rules, including a full IP (Inflectional) and CP sys-
tem, though not VP-internal subjects; general movement principles such as
raising and lowering (including V raising/lowering); Full Interpretation (FI)
and Functional Determination of empty categories; complete Case, Theta,
and Binding conditions, along with LF and quantifier movement (QR); and
so forth, totaling 25 modular principles that interact to give us the surface
sentences that are possible. As far we have been able to determine, this is
the most comprehensive parser of its kind, implementing the full range of
examples found in a modern generative principles and parameters theory.

As mentioned, with this parser in hand, we can easily reap some of the
long-promised rewards of using a well-worked out linguistic theory: with-
out special rules of any kind or any specially-designed movement constraints
and so forth, we can in a second or two parse examples as subtle as parasitic
gap sentences (this is the paper that I gave without reading) as well as fail
in exactly the ways that linguists’ (and even ordinary people) predict for
sentences like What do you wonder who likes, assigning exactly the same
structures that people seem to. See Figure 1 for a picture of how the im-
plemented system analyzes the parasitic gap sentence; along the righthand
side of the screen is a full list of the principles themselves.

Perhaps most importantly, as promised in current approaches, cross-
linguistic variation works: using the same parsing algorithm and the same
grammar, but with small parametric variations and a new lexicon, we can
parse, for instance, Japanese instead of English, in this case, the Lasnik and
Saito (1984) wh-questions that illustrate scrambling and a rather subtle
distribution of empty elements that are the meat of a modern theory. As
an example, consider the Japanese sentence: :

(1) Taro-ga nani-o te-ni ireta koto-o sonnani okotteru no
‘What are you so angry about the fact that Taro obtained’

Here the subject of the matrix clause (= you) has been omitted. Nani
and te (‘hand’) have been permuted from an assumed canonical indirect
object, direct object order—an example of scrambling. The LF for 'this
sentence may be interpreted roughly as, for what z, pro is so angry about
[the fact that Taro obtained z]. Here, pro represents the understood sub-
ject of okotteru (‘be angry’). As we shall see, the implemented system
does correctly recover this form (with some subtleties concerning alterna-
tive syntactic readings that we return to below). Thus as expected, on this
account there is no separate phrase structure grammar for each language

106 Linguistics and Computation

(JapanesePSG or JPSG, GermanPSG, etc.)—just a single UG, plus a hand-
ful of switches. Furthermore, again as expected, it did not take long to
“implement” the parser for the new language, if indeed one can even call it
implementation. Automatic programming is a better name for it.

Principle-and-Parameters Parser IE

Build LR Graph Language Op Status Options Parsers Run Screen Sentences Time Tracing Fllters
Theta Criterton

P-structure Theta Condition

hid Sub jacency

O Select And Run Sentence OWIEI?: “Which report did you file without reading’
LF: [c2(np(oET whichl (N1 report]] ' Ce1lelel D 1(FIR)2 [v d‘d]:,] 2] Dz(ne youl 2 [[u:2 {velve [ve:3 [vrlv file] . [npe

A-F1 11 Lpelr uithout] Dz PRO 1 [ie_[velv 1 v resding] 1 [ne-A-P] 1111311111
1 2 2 5 66 1

Wn-mavement in Syntax

S-bar Deletion

c2

wdl

e e —
DET Nt 12

c
uhlleh re;ort c/kzl urm
GRS VTE e 631 Ve

id P PP

e @ o ‘™
viil we withot PROTZ]
[8,-P]
]
file i (2] v

Case Fitter

Trace Case Condition

Colndex Subject & INFL

Condition A

Condition B

Condittion C

ECP

Bl =~ =~ ole o] = o glg gl = |« on

Contral

ECP at LF

[[SOr PN

A (F1i License operatorrvertadles
23] 1 F1: License syntactic adjuncts
181 vls) T
| \ ki Comp Requirement
reading

NDO (more) parses Generators

Parse S-structure

Assign Theta-Roles

Assign Inherent Case

Assign Structural Case

~l8 8IS B o= -

- Trace Theary

35 Functionsl Determination
1z

a Free Indexetion

' LF Novement

Figure 1: A snapshot of the computer output of the principles and param-
eters parser analyzing a parasitic gap sentence. The input is the sentence
“which report did you file without reading.” The output is a logical form
tree. Along the righthand side of the screen is a full list of the princi-
ples used in the parsing system, that remains invariant from language to
language.

Lest no one forget the distinction, this is a full-blooded parser. As Fig-
ure 1 shows, one supplies a sentence in orthographic form, and the parser
returns the proper structural descriptions associated with the sentence: the
associated S-structure, LF, and assignment of thematic roles and indices to
NPs. Note that this is quite unlike some recent approaches where the com-
putational system acts as a kind of “proof checker” where, given a structural
description and LF, the computer will tell one whether or not that particular
S-structure, LF, phonetic form triple can be derived from the axioms of the
theory via “guided deductions,” driven presumably for reasons of computa-
tional efficiency because these systems use more powerful theorem provers.

Transformational Grammar 107

Note that in order to use such systems as parsers, the straightforward ap-
proach involves costly analysis-by-synthesis, and indeed timing results for
such systems have been so far disappointing (Stabler 1992). We have found
such first-order theorem provers and their attendant corner-cutting to be
unnecessary. Indeed, their use may introduce a potentially pernicious in-
fluence that computer implementation is precisely designed to sidestep, in
particular that the linguist knows just what the intended derivation of an
example sentence is.!

Now of course we all know that linguists are infallible (who could deny
it in such surroundings?), but to be sure, the implications of modern lin-
guistic theories can be complex enough that it easy to lose track of what
happens if some assumptions change, or even if they do not. In fact, we can
document that this is so. For instance, as we shall see, the implemented
system — reflecting the linguistic theory exactly — can produce many move-
ment possibilities even in a simple sentence (for example, in the Japanese
example above, there turn out to be 106 possibilities for movement and 468
indexings), and it is highly unlikely that a linguist would hit upon them all
(present company excepted of course).

As a concrete example, a sentence that is standardly cited as a “Sub-
jacency Violation,” *Who does Mary wonder why John hit? (Example
4:57 in LU) actually admits three structural possibilities that slip by that
constraint but are ruled out later down the road by another condition, Con-
dition B (they all involve a base-generated PRO bound to John, hence out
by Condition B). These possible derivations were evidently never noticed
before. Thus, building such a parser can explore unintended avenues of
a theory, and so it becomes part of the theory-construction process itself.
In general then, the search for all possible parses can produce somewhat -
unexpected results. We note that in such cases the parser is not “wrong”
in the sense that it is producing parses that are inconsistent with linguistic
theory. (Naturally, the parser falls down where the theory does, but then,
so much the worse for the linguistic theory, at least—indeed, as we shall
see, this is a benefit of the computer implementation.)

In short, it may well be true that linguistic theory is now deductively
rich enough, like mathematics, that it actually demands a tireless machine
to keep slavish track of all the bookkeeping. We should not be surprised
by this. After all, there are now mathematical results, like the 4-color

1Other systems of this kind have been fragmentary, or else not really parsers at all in
the sense of mapping input sentences in their orthographic form to structural descrip-
tions. The best worked-out example that we know of, Stabler’s (1992) formalization of
Chomsky’s (1986) Barriers model, has two admitted shortcomings: first, Barriers is but
a fragment of a principles and parameters syntactic theory; and second, the resulting for-
malization is not a parser (it can only check structural descriptions for well-formedness,
it cannot map sentences to their structural descriptions efficiently enough).

108 Linguistics and Computation

map theorem, proved only by machine. Beyond this however, the parser is
complete enough to serve as a kind of linguists’ apprentice, if you will—an
oft-cited goal from the 1960s, but even more appropriate today. Such a
give-and-take partnership is possible only if the system does in fact parse
fast enough to make user interaction bearable, and if the system explores
all possibilities, rather than letting the user exclude some cases that would
actually reveal gaps in the theory.

So, let us give a roadmap then for the remainder of this article. We
shall swiftly review the earlier ages that implemented TGG: first, the Dawn
Age (classic transformational parsers); followed by the Dark Age (little or
no work on parsing and TGG); and then the Middle Ages (the Marcus
parser and its relatives), pointing out the relevant difficulties that moved
linguists and computation from one age to the next. We conclude with the
Renaissance: the computational representation and control of a transparent
implementation of a principle and parameters linguistic theory.

2 The Dawn Age

Dawn is marked by rose - the rosy-fingered dawn, or rotodactylos as Homer
said — and optimism similarly suffused this period of computation and TGG.
It was thought that transformational generative grammar could be used
directly as a parser for natural languages. Like all dawns however, this
early hope faded. Why? Transparent parsers for TGG used the famil-
iar structural description matching/factorization—structural change format
along with the usual base context-free structure grammar, thus yielding
highly language-particular and surface and construction-oriented rule Sys-
tems. A standard example would be the “passive” construction in English:

structural NP [+V +Aux], [+V —Aux], NP
description 1 2 3 4
structural

change 4 2 Be+en 3 by 1

Note that this rule is in fact particular to English—it explicitly encodes
the left-to-right order of English subjects and objects, the morphology of
be, and so forth. A typical transformational system for even a fragment of
a language, say, English, would consist of well over a hundred such rules;
for instance, the MITRE system (Zwicky et al. 1965) contained 134 such
rules, and Petrick’s question answering system (Plath 1976) many more.

We call parsing systems based on such rules transparent because they
embed rules directly in a parsing device, without additional source-to-source
translation. To take another example consider the rule of subject forma-
tion from Petrick (1965) that attaches a wh-NP to the Auxiliary position,

Transformational Grammar 109

converting for instance will who eat ice-cream into who will eat ice-cream,
while checking that the sentence has not already been turned into a ques-
tion. Each subtree component is marked with a number (1 through 6, 6=
the Sentence; 1= boundary marker #, 2= the Auxiliary tree; 3= NP; 4=
any subtree X; and 5= a boundary marker #). The transformation adjoins
component 3, the wh-NP, to subtree 2, leaving behind nothing:

RULE SUBJFRMA (subject formation)

structural

description: S1 # AUX NP X #
1 2 3 4 5

constraints: or: not S1 marked + Ques

NP is marked +wh
structural
change: 1 (32) 0 4 5

Note that on top of these detailed surface-patterned conditions, transfor-
mational rules were marked as obligatory or optional, cyclic or postcyclic,
embedding or not, and so forth. These and other systems were intended to
be used as full-fledged parsers, linguistic apprentices, and so forth—all the
conventional noble goals. However, as is well known, there were many com-
putational problems with such parsing systems—so many problems that
the transparent, transformational rule-reversal approach was abandoned in
computational linguistics. We summarize some of the familiar difficulties
here:

1. Rules were ordered in intricate ways. Further, one could delete items,
so a forward transformational rule need not be invertible (if an item
is deleted, what do we invert it to?). Thus, in general the mapping
backwards from an input string to a structural descnptlon would be
highly nondeterministic.

2. Since rules operated only on structural descriptions (factorized trees),
and we are given a sentence not a tree to parse, any parser must first
recover some structure to match against. A common solution to this
problem (adopted by MITRE, for example), was to build a phrase
structure covering grammar for a (superset) of initial structural de-
scriptions, and then attempt to run rules (deterministically) in reverse
against these.

3. Arbitrary deletion can loop, or, at best, take at least exponential
space. As a simple example, consider any transformation that deletes
some element. We cannot literally invert this to say that this element

110 Linguistics and Computation

may be inserted between any two positions in a tree. To consider an-
other example, the explicit reconstruction of an empty subject, as in
Peters’ (1973) example Their sitting down threatens [empty | to spoil
the joke, where the empty position corresponds to their sitting down.
If we embed this again, as in [their sitting down promising [empty]
to steady the canoe | threatens [emptys | to spoil the joke, then the
second empty position, when reconstructed, contains the original full
subject, with its reconstructed subject. If the deep structure of such
examples is ezplicitly reconstructed, then the empty subject can be
embedded over and over again, which leads to a deep structure that is
doubly exponentially larger than the surface structure, and inevitable
computational intractability. Of course, there are familiar termina-
tion problems with the arbitrary Turing machine computations that
can be simulated with unrestricted Aspects type systems.

To attempt to overcome these problems the MITRE system used a
context-free surface grammar with 49 rules and 550 subrules to first recover
a set of presumable surface trees, and from there use reverse transforma-
tions to recover presumable base trees (that is, representations of thematic
relations, or a combination of what is now D-structure and LF). These were
then filtered by a final stage where the presumable base or D-structure tree
was driven by forward transformations and then checked against the given
sentence. Great effort was expended at developing covering grammars and
inverse transformations in the MITRE system. To reduce nondeterminism,
the inverse transforms were assumed to be obligatory—that is, the system
did not follow the alternative paths of both applying and not applying the
inverse. (We shall see that the system we describe overcomes this prob-
lem and considers both possibilities.) Even so, practical parsing efficiency
was not achieved. The MITRE authors note that even with a much smaller
grammar for some simple sentences, The general that Johnson met in Wash-
ington had traveled eight thousand miles, over 48 presumable surface trees
were obtained. Their conclusion was simple. To quote them (Zwicky et
al. 1965:325): ‘

It is clear from even these few numbers that if the procedure
is to be practical, it will be necessary to incorporate a highly
efficient routine for obtaining surface trees and to work on the
rapid elimination of spurious ones.

Strikingly, this efficiency proved very hard to achieve. Perhaps the
only widely-publicized example of a TGG system that achieved practical
speeds was the method of Petrick (Petrick 1965, Plath 1976), developed at
IBM that was actually used in a database question-answering system. This

Transformational Grammar 111

method also used a covering grammar, using powerful augmentations of a
context-free grammar to reduce the number of surface trees; however, it
remained grounded in transformational models of the 1960s.

3 The Dark Age

After the Dawn Age of the early 1960s we enter Dark Age. Not only
were methods based on TGG discredited for parsing, but early transparent
approaches to psycholinguistics grounded on TGG lost favor. By the early
1970s it was possible for standard texts to proclaim the demise of TQG.
Fodor, Bever, and Garrett (1974:368) have this to say:

... there exist no suggestions about how a generative grammar
might be concretely employed as a sentence recognizer in a psy-
chologically plausible model.

while a comparable text on language acquisition by Maratsos (1978:246)
gave the same message:

If... transformational grammars represent the essence of the lin-
guistic system captured by the child, the phenomenon of lan-
guage acquisition seems to be an inexplicable mystery.

As is familiar, to fill this apparent explanatory gap, several more “com-
putationally oriented” approaches were devised, augmented transition net-
work grammars being among the most prominent. Alternative linguistic
theories were also proposed, presumably more consonant with processing
and acquisition considerations. Transformational approaches, save for ef-
forts like that of Petrick, died out.

Like the Dawn, this Dark Age did not last forever, however. By fo-
cusing on at least one of the computational problems with TGG, namely,
its computational inefficiency, some insights were soon won about how to
emerge from the shadows of the past.

4 The Middle Ages: Transparency Lost and Regained‘

By the middle 1970s, our understanding of both linguistic and computa-
tional theory had advanced to the point where parsers for TGG could again
be taken seriously. The key to this advance was constraint. On the lin-
guistic side, prompted by empirical and learnability considerations, TGG
was constrained in a number of directions. Transformations were made op-
tional; extrinsic rule ordering was eliminated; the Structure Preservation
Hypothesis ensured that most derived structures could be base generated
(by some context-free grammar) anyway; X-bar theory demonstrated how

112 Linguistics and Computation

the lexicon could be used to fix most of the individual phrase structure rules
of the base; full copies of empty pronominals were replaced by indexing of
empty elements not subject to recursion; and individual rules were shown
to be subject to island constraints and other locality conditions, unifying
some under a single movement rule—the Extended Standard Theory (EST).

On the computational side, the corresponding constraint was determin-
ism as advanced in the Marcus parser (Marcus 1980). Marcus avoided the
problems with the MITRE system by eliminating the backwards nondeter-
minism inherent in the older system: he assumed that local surface cues
were enough to fix the inverse application of transformational rules, build-
ing an EST-type S-structure. The parser was deterministic in the sense that
a single structure was built—hence each operation was deterministic, if one
considered the operation of the parsing engine as the operation of an au-
tomaton (this was borne out by subsequent analysis by Berwick (1985) and
more carefully by Nozohoor-Farshi (1987) in which it was established that
the languages recognized by the Marcus-type devices were deterministic
context-free languages).

Note how these assumptions remove the problems of the earlier TGG
systems: deleted elements are assumed to be recoverable from structural
cues; by positing that this is just deterministic context-free parsing a large
search space of possible trees to map back to is eliminated. Further, by
using explicit phonetically null categories that could not be successively
embedded, degenerate examples of the Peters’ type were avoided. Of course,
the trick in all of this is to show that this is sufficient to cover the entire
linguistic theory. 4

Using the older linguistic terminology, the Marcus parser used a set of
structural descriptions and inverse structural changes that were strongly
constrained, in the following sense. The structural descriptions, the trig-
gering patterns for structural changes, were constrained to examine only (i)
the features of the topmost node in a pushdown stack (say, a VP or NP) and
its daughters, along with (ii) the features of perhaps one additional node in
this stack, plus (iii) the features three input buffer cells, namely the current
input word or phrase of the sentence being analyzed, along with two addi-
tional words or phrases. This locality condition on structural descriptions
had the effect of enforcing c-command and other locality conditions as re-
quired by the EST theory (see Berwick 1985 for details). Put another way,
the architectural features of the system constrained structural descriptions,
as argued by Marcus (1980). Structural changes were also constrained to be
deterministic, as mentioned: they could not remove features or structure,
but simply monotonically add to it; further, they also were subject to the
same locality restrictions as structural descriptions.

Transformational Grammar 113

We can now compare an old-style transformational rule, say, passive,
with the corresponding structural description—structural change format (if-
then rules) in the Marcus parser, and note where the constraints make a
difference.

We repeat below the English passive rule as it might be written in an
older transformational system:

structural NP [+V +Aux], [+V —Aux], NP

description 1 2 3 4

structural 4 2 Be+en 3 by 1
change

Under the constrained formulation, the object NP is base-generated as
before (reflecting its underlying thematic role), and then, by the Structure
Preservation Hypothesis, can move into an empty Subject position, leaving
behind a phonetically null element. The movement does not violate any
locality constraints. (The creation of the by phrase remains a bit of a
mystery on this account.) More importantly from the parsing standpoint,
the structure after the movement has occurred can serve as a deterministic
triggering surface pattern for a corresponding rule inverse.

This is just what the Marcus parser does. In the Marcus version, this
single rule is broken down into three rules, to pick up one piece at a time
the left-to-right “proper analysis” of the structure after the transformation.
The passive rule itself depends on prior marking of the verb as passive,
which in turn depends on detecting an auxiliary form of the verb be plus
a verb with ed morphology, as in Mary was kissed, roughly as follows (the
exact rule formulations have been slightly modified for readability):

Rule 1:
passive-auxiliary:
trigger: input cell 1 cell 2
root be verb marked en
action: attach be form
as passive

mark verb as passive

114 Linguistics and Computation

Rule 2:
trigger: verb marked passive
action: run Rule 3

Rule 3:
trigger: verb marked passive
action: insert NP trace

as object (link to Subject)

Note that the division into separate rules is required by the way the
parser works left to right: the Subject NP must first be parsed as if it were
a declarative, and only then is the auxiliary verb and verb with passive
morphology picked up. This is the first part of the proper analysis tree
factorization (in reverse). (In fact, the whole rule is properly conditioned
with features beyond the feature proxy en so that only passivizable verbs
will be marked as such, this detail being suppressed here.) Next, when
the verb such as kissed is actually in the first buffer position, the parser
creates a VP (not shown here), and then inserts a phonetically null NP,
a trace, into the first buffer position. This NP is then parsed just as if it
were an ordinary object noun phrase, by the same rule that parses noun
phrases. By the determinism hypothesis, it is assumed that there is a unique
action for every trigger (where the triggers may be prioritized essentially
by specificity).

However, by slicing up the rules in this way the parser does lose some of
the modularity of the EST system itself. Not only has one rule been split
across three, but the division of the EST theory into an X-bar base (form-
ing D-structure) plus transformations has been partially obscured. In the
original Marcus parser, much of the information about phrase structure or
X-bar constraints was encoded in a particular sequence of packet activations
that turned on or off whole rule groups at a time. In our example, the rules
to parse specifiers of Inflection phrases (or IP projections in current ter-
minology) are collected into a single group, a Parse-Subject packet. Rules
can only trigger if the corresponding packet they are in is activated (by
some previous rule); this activation sequence corresponds roughly to the
Specifier-Head-Complement order of X-bar phrase structure. Similarly, the
expansion of INFL itself is guided by a linear sequence of packet activations.

Modularity is obscured (and transparency violated) because there is
nothing in the parser’s rule-writing framework to guarantee this division
into X-bar rules plus transformations. For instance, Rule 3 that actually
inserts a trace into the NP object position resides in its own packet, apart
from other verb complement rules. Similarly, the division into three sep-
arate rules is demanded in part by the exigencies of left-to-right analysis

Transformational Grammar 115

of the input. More generally, one can see that this parser is construction-
specific: the rules to handle a sentence that in modern terms is putatively
derived from the same constraints, such as It was believed that the ice-cream,
was eaten, requires an entirely different set of four or five completely dif-
ferent rules. In this way, commonalities among syntactic phenomena are
obscured rather than illuminated.

Further, ideally the restrictions of movement phenomena generally are
motivated in the Marcus parser specifically by determinism and the funec-
tional architecture of the parsing machine. This is both a plus and a minus.
On the plus side, the locality restrictions on stack and buffer access conspire
with determinism to guarantee a linear time parse (this much follows from
the formal results about the class of deterministic context-free languages
parsable by this device); on the minus side, basic linguistic constraints like
c-command and subjacency are thereby implicitly “hidden” from the oper-
ation of the rules themselves. Efficiency seems to have been purchased at
the price of a loss in theoretical transparency.

Expanding on this last point, and turning to more recent analyses of
so-called “passive constructions,” we find that passive is not a unitary phe-
nomenon. Passive includes movement of the object; inserting a be and
altering the main verb’s morphology, and adding the by phrase. Chomsky
noted a decade ago that all of these components can occur on their own.
Specifically, the object can be in subject position even without a verb, as
in the destruction of the city yielding the city’s destruction); the by phrase
can appear by itself, as in the book understandable by everyone; passive
morphology can occur by itself, as in the melted ice-cream. Further con-
firmation comes from examining languages that have different word orders
than English, but still exhibit passive-like sentences, say, languages like
Japanese, German, or Dutch, where the verb comes at the end, revealing
that even the Subject—Verb—Object Passive Rule triggering pattern was
illusory: in Dutch we have Kees zei dat Jan Marie kuste (‘Kees said that
Jan Mary kissed’) and the corresponding passive form Kees zei dat Marie
door Jan gekust werd (‘Kees said that Mary by Jan kissed was’); (see Kolb
and Thiersch 1990:252-253 for these examples).

What the Marcus parser has done, then, is to take presumably deeper
underlying principles and “compile” them out via deductive chains, yield-
ing particular surface sequence patterns. Over the past decade, linguistic
research in the EST tradition has eliminated language-specific rules in fa-
vor of a small set of universal principles plus parametric variation, perhaps
restricted to the lexicon; we shall turn to these in the next section. Thus,
while the deterministic Marcus parser design achieved a considerable suc-
cess in terms of efficiency and faithfulness to the input-output represen-
tations of linguistic theory within its own era, it does not employ current

116 Linguistics and Computation

theoretical vocabulary or mirror precisely the fundamental “atoms” of cur-
rent principles and parameters theory. As a result, cross-linguistic parser
construction is difficult. For example, the parser architectural constraint
that helps ensure the locality condition known as the Specified Subject Con-
dition actually depends on the specific Subject-Inflection order of items in
English. Similarly, the English parser rules rely on the head-first charac-
ter of phrases: given a preposition, verb, determiner, and so forth, then
the parser can easily predict the existence of a prepositional phrase, verb
phrase, noun phrase, and so forth. Indeed, this almost makes the parser
a left-corner parser, using the same strategy for English as Head-Driven
Phrase Structure Grammar. Building a parser for a head-final language,
such as Japanese or German, entails major surgery; indeed, it is not clear
that such a project can be carried out at all.?

In short, with the advent of constraints in the TGG theory of the 1970s,
determinism and faithful construction of TGG representations TGG proved
to be a major step forward out of the Dark Ages for TGG parsing. What
remained was to build a system that was efficient and faithful to more recent

‘grammatical theory in both input/output representations and operating
principles. That is our story for the Renaissance of TGG parsing, described
next.

5 The Renaissance: A Principles and Parameters
Parser

As is well known, the past decade has seen a shift in transformational gen-
erative grammar from homogeneous, language-particular accounts of rules
such as passive to a highly modular, non-homogeneous, and parameter-
ized deductive system of universal principles. Following current practice,
we shall call such approaches principles and parameters theories. On this
view, there is no “rule” of passive, but rather a system of (declarative)
constraints that interact to yield surface forms in English that may be de-
scribed as passive. If we think of the principles as axioms, the passive
construction emerges as a theorem. But the deductive chain is much longer
‘than in a simple if-then rule system like the Marcus parser, where there
is a direct, one-step connection between passive sentences and rules. Let
us briefly review this notion here, and then see how to make use of it in a
parser.

Assuming some familiarity with the familiar “Y-diagram” of linguistic
representations in transformational theory linking phonetic form (the ortho-

2The only large-scale German Marcus-style parsers that this author knows of, with
many hundreds of rules, were constructed for the MIT Athena Foreign Language Instruc-
tion Project. This parsing system proved to be extremely unwieldy for both German
and Japanese.

Transformational Grammar 117

graphic input), LF, S-structure, and thematic representation (D-structure),
55 well as the basic components of this theory, we shall merely note here
some of the (universal) principles involved that “force” the derivation of a
passive sentence:

(1) X-bar theory: Languages allow just two basic tree shapes or pa-
rameterizations for their constituent phrases: (i) function—argument order,
as in English, where heads begin constituents; or (i) or the mirror image,
argument—function form, as in Japanese or German.

(2) Thematic theory: Every verb must assign a thematic role to its
“arguments” that says, roughly, who did what to whom; and every Subject
and Object must receive exactly one such role.

(3) Case Theory: Overt or pronounced Subjects or Objects must receive
Case where by Case we mean an abstract version of what one would find in
a Latin grammar. The Subject position receives, or is assigned, nominative
case from the inflection of a verb; the Object of the verb receives accusative
case; the Object of a preposition receives oblique case, and so on.

(4) Movement theory: Any phrase can move anywhere (move-a), sub-
ject to locality constraints. When it does, it leaves behind a phonetically
silent element, a trace, linked to itself.

Given these axioms, then we can derive a passive sentence such as the

ice-cream was eaten as follows:

X-bar theory sets the basic function-argument order of English

i

® was eaten the ice-cream

L

Eaten is an adjective, and so does not assign Case

!

Ice-cream must receive Case

)

Ice-cream (allowably) moves to subject position
where it receives nominative case

Leave behind an empty category, linked to ice-cream
(so that eat can meet thematic constraints and
make ice-cream the thing eaten)

!

the ice-cream was eaten trace

Just as with the earlier TGG systems, the key question now is how are
we to build a parser to invert the derivation and map from sentence to

118 Linguistics and Computation

its underlying structural representation (both S-structure and its so-called
Logical Form)? Further, how can we do this efficiently? Note that this prob-
lem is already different from that of earlier transformational theory, for two
important reasons: first, the system is formulated as a system of declara-
tive constraints on representations; second, the constraints themselves are
deterministic (given one input tree they produce only one output).

Pursuing this proposal, we can divide principles into one of two classes:
generators and filters. Generators produce or hypothesize possible struc-
tures. For example, consider X-bar theory. Given a string of words, say,
eat the ice-cream, this theory theory would say that eat is possibly the
beginning of a verb phrase, with the ice-cream as its argument. Similarly,
movement creates possible structures. Given a valid X-bar structure, move-
a can displace various noun phrases like ice-cream to create new ones.

Filters weed out possible structures. For example, if the structure John
is proud ice-cream is input to Case Theory it would be filtered out as a
violation (it should be proud of ice-cream, where of assigns case to ice-
cream). Our actual system contains 17 filters and eight generators, as
shown in Table 1.

Given this generator-filter model, the simplest way to build a parser
is as a cascaded sequence of principle modules, with the input sentence
piped in at one end and one or more Logical Forms emerging out the other:
the sentence must run a gauntlet of constraints. For example, consider the
example sentence, Mary was kissed. We can imagine passing it first through
the X-bar module, producing several output possibilities depending on word
and structural ambiguities, as is typical of context-free parsing generally.
All the usual techniques for efficient processing, such as lookahead, can be
useful here.

Continuing, let us suppose that the hypotheses output from the X-bar
component, tree structures, are fed into the next module down the line,
say Case Theory. Case Theory now acts as a declarative filter on the
output trees, eliminating some of them. Next, Movement expands the
possibilities once more, generating all possible structures with displaced
phrases; continuing, after several running through several other constraint
modules, the final output Logical Form will emerge (if one is possible at
all).

Of course, this is still mere conceptual handwaving. We still face the
problems of twenty years ago: (1) how can we generate just the right trees
to begin with; (2) how can we invert the effects of transformations? In
response to these demands, we adopt a more sophisticated parsing approach
that combines some of the features of analysis-by-synthesis (“generate-and
test”) and analysis-by-analysis (“invert from the sentence”), relying on the
declarative determinacy of filters (they produce only single outputs) and the

Transformational Grammar 119

Filters
Theta Criterion
D-structure Theta Condition
Subjacercy
Wh-movement in Syntax
S-bar deletion
Case Filter
Trace Case Condition
Agreement of Subject and Inflection
Condition A (anaphors bound in governing category)
Condition B (pronominals free in governing category)
Condition C (referring expressions free)
Empty Category Principle
Control Theory ,
Empty Category Principle at LF
Full interpretation: license operator-variables
Full interpretation: license syntactic adjuncts
Wh Comp requirement

Generators
Build quasi-S structure
Assign thematic roles
Assign inherent Case
Assign structural Case
Move-a
Functional determination of empty categories
Free indexation
LF movement

Table 1: The principles (filters and generators) used by the principles and
parameters parser.

120 Linguistics and Computation

restrictiveness of generators (so-called empty positions are highly restricted
in nature).

These are by no means trivial problems. Combining the possibilities of
adjunction and empty categories in a simple X-bar theory implies that one
can associate with a single lexical token, a verb say, with a countably infinite
number of well-formed adjoined VP structures with empty categories at the
leaves. To take a concrete example, on common assumptions each terminal
element of the following basic clausal structure may be empty, that is,

CP=‘>)\:3

(2) [cr Spec o Clie NP [v I[ve [V NP]]]]]]

Recursion through CP will then lead immediately to nontermination prob-
lems, since we can generate an arbitrarily long string of empty elements.

How do we get around such problems? In brief we use a covering gram-
mar to generate a superset of hypotheses that satisfy X-bar theory and any
base-generated empty elements, while incorporating the constraints from
the actual sentence elements (thus carrying out analysis-by-analysis of the
sentence as well). These candidate structures are then passed through the
filters and generators, perhaps in a parallel (interleaved) way.

The reason for starting with X-bar theory is simple. Many, if not
most, of the constraints depend on particular structural configurations.
For instance, Case is often assigned only under a particular local structural
arrangement—the element receiving case is an immediately adjacent sister
to a verb or a preposition. These logical dependencies must be respected
in any principles and parameters parser design.

The theory components themselves — the principles — are encoded using
terms and predicates as close to the linguistic theory as possible; we give
examples below. Thus the parser aims to be as transparent as possible,
within the constraints of attaining efficient parsability. In fact, both goals
seem to be fairly well attained, with average parsing times on the order of a

few seconds or less for the several hundred example sentences in the Lasnik

and Uriagereka (1989) reference book that we used.

In the sequel, we first describe how the principle-based parser works
via a parasitic gap example sentence, while discussing the operation of the
covering grammar. We then continue with an illustration of the power

3The NP may be empty to account for empty categories; by head movement, both V
and I may be lexically empty; C may be filled by an empty complementizer; the Specifier
of C need not be filled at all. Notational conventions: We adopt a two-level system for
all categories except verbs; hence CP=C2, IP=I2; C'=C1, I'=I1; CO= lexical head,
etc., in our structures. For VPs we have a 3-level system, to attach indirect and direct
objects to V2 and V1, respectively. For readability we sometimes use CP, VP, and so
forth instead of C2, V2, and on.

AR

Transformational Grammar 121

of the system by demonstrating how simple it is to switch to a different
language, in this case, Japanese.

6 How the Parser Works

To see how the parser actually works together with the linguistic section we
work through the parasitic gap example given in the first section in detail,
showing how the 25 principles interact to yield precisely the correct output
analysis. As mentioned earlier, the parser produces correct parses in the
sense that it succeeds or blocks as described in the LU textbook for each
example.

Recall that for this sentence the parser builds an LF with a controlled
PRO indexed to you as the subject of reading, while a pure variable fills
the position after reading (marked —A(naphoric) —P(ronominal) via the
functional determination of empty categories, as adopted here); an NP trace
is the object of file, coindexed to the parasitic empty category and to which
report. Note also that head movement has taken place: do is raised to
Inflection, so as to receive tense, and then the Verb-Inflection complex
raised and adjoined to C yielding Subject-Auxiliary inversion. All this
detail is captured by the 25 principles shown in Figure 1 and Table 1.

We first give an overview of the computation, and then go back and cover
in detail how the parser works (refer back to Figure 1.) Basically, there two
main parsing stages: (1) S-structure recovery via a covering grammar; and
(2) the application of the remaining filters and generators.

In Stage I a single quasi-S-structure is recovered by a special-purpose
LR machine, with generic empty categories already placed in the positions
of the object of file, the subject of reading, and the object of reading, and
with head movement and inversion computed (but sans indices for NPs, the
identity of the empty categories and so forth). This is done by a full LR(1)
parser that uses a 30-rule grammar to generate quasi-S-structures. We use
the term “quasi-S-structure” because the phrase structure that is gener-
ated does not meet all the constraints on S-structure; in particular, empty
categories are inserted in all possible locations without further checking
and without their features (as traces, PRO, etc.) being determined. For
instance, the first stage LR parser assigns the same structure to John seems
to be happy and John wants to be happy, inserting a generic empty cate-
gory as the subject of the complement CP. Later principles must fix these
empty categories as a trace in the first case but not the second. It is this
simplification that allows the first stage LR machine to be small and ef-
ficient; it does not try to check all principle conditions at once. The LR
machine we use has multiple table entries to handle ambiguity in natural
languages, including the possibility that an empty category might or might
not be inserted in some position.

122 Linguistics and Computation

Free (optional) Movement then fans this single output to 49 candidates,
which are whittled down to five by locality and case constraints; Free In-
dexing expands these back to 36, and then the Theta Criterion, Control,
and Condition B cut these back to just a single final LF (we shall see in
detail how this is done next).

(3) Which report did you file without reading?

(4) Stage I (S-structure with underdetermined empty categories):

[cz [NP [Det whiCh’][Nl T6p07't” [01 [C [C] [1 I(Agr) [V dZd]]] [12 [NP you]
[[trace-I [ve [ve [v trace-do [ve [v file [xp NP-ec[=A=P]]]] [pr [+
without|[;, [ve NP-ec[+A%P]][,, [; trace-I [yp [V I reading])]

[ve NP-ec[=A=£P]|]ITINI]

(5) Final LF output:

[cr [NP [5.. which] [y, report]1] [a1 [c [c | [I(Agr) did]]] [ie [ve youl2
[[trace I-do [vs [ve [v trace-do [ve [v file]]] [xe NP-t[-A-P]]1]] [ob
[p without] [;; [ve PRO2 [y [y trace-I [ve [v I [v reading]]

[xe NP-[-A-PYI]TTIIN]

Between Stage I's Parse S-structure output and the single, final LF
output above there is much work done in Stage II. The reader can follow
along by noting the numbers at the top and bottom of each principle box
in the computer snapshot. Numbers going in denote structures input to a
principle module, and numbers out are those that make it through (either
generated or filtered).

Briefly, the cascade of the remaining 24 principles runs like this:* Full
Interpretation of syntactic adjuncts at S-structure and Sbar-deletion do not
weed out any structures.

Next, Move-a applies freely, compositionally computing all possible
chains and assigning indices, in this example yielding 49 candidates. The
actual algorithm is sophisticated, but the central concept is not. The mech-
anism used here essentially builds all possible chains by computing the set
cross-product of possible links between existing empty categories and par-
tial chains as the parser walks a candidate tree structure, extending partial
chains or not as the parser compositionally traverses the tree structure it

4The principles are ordered as shown in the figure, but not the computer snapshot;
note that principles may be statically or dynamically reordered, often with significant
computational effects. For optimal performance, the operative principle is to delay can-
didate hypothesis expansion by generating principles like movement as long as possible
and apply filtering principles like the Case Filter or Condition B as soon as possible,
subject to the logical dependencies of the theory. The connection between principle
ordering and “guiding principles” such as Earliness or Least Effort in recent linguistic
discussion has not escaped our notice.

Transformational Grammar 123

has already built, starting with some selected empty category, and keep-
ing track of partial chains built so far as well as remaining free empty NP
candidates or a final non-trace NP head for the chain.

This nondeterminism reflects the complete optionality of the underlying
linguistic system. All movement is optional. Hence, for each empty cate-
gory the parser can either decide or not for it to participate in an already
existing partial chain, do nothing, be a l-element trivial chain, or start
a new chain, all nondeterministically. Naturally, this process must meet
some constraints; for example, no chain can cross more than one bounding
node, violating subjacency. In addition, an overt NP optionally heads a
chain; an element cannot participate in more than one chain, and all chains
must be complete, that is, headed by a non-trace element (hence, an empty
Operator can head a chain, for relative clauses).’

As a simple example, consider the generic empty NP after reading. The
parser may freely decide to have this empty NP start a chain, be a trivial
l-element chain, or do nothing at all with it. If it has started a chain (it
is the tail), then on composing the subtree in resides in with the subtree
of the next highest maximal clause, the VP, we find that there are no
additional empty NP candidates in the subtrees below the VP to select,
so the VP simply inherits as its (partial) chains the base partial NP trace
chain. Compositionally moving one more tree up, to the IP, the parser can
now examine the subtrees of IP and take note of the candidate empty NP
that is the subject of reading. Thus the parser may now freely select to
extend its partial chain by using this free candidate or not (if that candidate
were already the part of another chain, it would not be on the list of free
candidates). Suppose it does. Similarly, a few compositional steps later,
the parser may freely select to end the chain with the non-trace head which
report. Thus the parser can and does output the following (ultimately
failed) possibility, where which report is linked to both the object of file
and the subject of reading. (Note the coindexing; here, the object of file
is in effect an intermediate trace, and the object of reading is not part
of any movement chain.) Note that some (movement) indices are now in
place. Of course, we must ensure that this Chain Formation algorithm in
complete, so that among all these possibilities we generate at least all the
proper chains as well.

(6) [c2 [we [pe which] [xy report]]y [ci [c [c] [: (Agr) [v did]]] [tz [we youls
[u [It [VP [vp [vz [VP [v ﬁle] [NP NP't['A'P]]I]] [PP [P w'ithO'U't] [12 [NP
NP-t[-A-P]l1 [i [ve [v I [v reading]] [we NP-[-A-P]]II]INITIII]

SFor reasons of space we must omit here how the parser makes sure it is not building
redundant chains as well as checking the i-within-i condition of circularly referential
chains. We have also taken some liberties with the full description of the composition
process.

124 Linguistics and Computation

Next, these chain-augmented structures are assigned structural and in-
herent Case, and run through the Case Filter (in this example, with no
effect on eligible candidates). Of these 49 different chain outputs with Case
now assigned, all but five will pass through both the Trace Case Condition
(traces cannot have Case) and Subjacency, with #-Roles being assigned in
between these two constraints, and Wh-movement in Syntax checked (as
appropriate for the language).® Specifically, the fourth chain output from
these two constraints will ultimately prove to be the winning structure
(though the system cannot know that yet, of course). This has a single
chain linking the object of file to which report, and leaves the subject and
object of reading as unspecified empty categories.

Proceeding, Free Indexing greatly expands these five possibilities to 36
by computing all possible indexings between any remaining unindexed NPs.
Again, the process works essentially by forming the compositional cross-
product of possible indices: if we have three indices 1, j, and k, then either
they are all unequal; ¢ and j equal, k, unequal, etc.—precisely the problem
of partitioning n elements (the NPs) into m sets (the indices). Features of
the empty elements are fixed by the theory of Functional Determination, a
theoretical choice point that can in fact be altered; the parser would then
simply be using a different grammatical theory.

Finally, Control Theory cuts these 36 structures down to ten (ruling
out uncontrolled PRO); passing through the Theta-Criterion and Binding
Conditions A, B, C, the Empty Category Principle, LF movement, and
Full Interpretation at LF, the parser eliminates all but one of the viable
candidates, striking out (via Condition B for the most part) cases where
PRO is bound in its minimal governing category where it should not be. Out
of many hundreds of possible interactions, the single right result emerges,
as displayed earlier.

This sketch does not say how the Stage I and Stage II processes are
carried out in detail. While there is not enough space for a full descrip-
tion here (see Fong and Berwick 1992), we can give at least some of the
details about how the quasi-S-structures are computed and how linguistic
principles are represented and applied. Let us cover these topics in turn.

6.1 Stage I: Building Phrase Structure

The key idea to build the quasi-S-structures is to take some of the ideas of
determinism from earlier systems — namely, using as much of the surface
structure cues as possible to deduce the distribution of empty categories
— and build that into a bottom-up, shift-reduce LR parser that is small

6The reader may note that in this example then it might have been fruitful to reorder
Subjacency ahead of Case or Theta Role Assignment after the Trace Case Condition,
saving some work as suggested earlier since fewer candidates will have survived.

Transformational Grammar : 125

enough to work efficiently, while at the same time producing only a rela-
tively small number of candidate trees. Currently, we do this by building
a covering grammar for S-structure, that varies from language to language;
‘each language uses about 30 rules.

Figure 2 shows the major components of this covering grammar. As
the figure shows, the covering grammar is formed from two parts: (1) the
‘phrase structure for D-structure, as given by the instantiated X-bar rules
for a given language, and certain empty category rules and adjunction rules,
introducing empty NPs (empty was followed John) and empty elements for
Adverbial adjunction ([, was followed John][as, why]; and (2) addition
of movement at S-structure, including Argument and Nonargument move-
ment, scrambling (via adjunction), and limited Head movement.

S-structure rules =

~

X-bar rules: X — Spec, X
X = N, Spec = Det
[ve [pe the] [w destruction of the city]]

D-structure rules { Empty category rules: NP—)\
[ie [x0 NP-ec[£A+£P] [yp was followed Johnl]

Adjunction rules: VP—VP, Adv
{ [ve [ve was followed John] (a4, why]]

+
Movement CP — Adv,C'; Adv —)\
rules [cp [aav why][er was John followed)|

Figure 2: Components of the phrase structure grammar for S-structure
are constructed by taking the D-structure grammar and adding adjunction,
empty categories, and movement.

In more detail, the X-bar rules are binary branching and use unordered
righthand sides. We assume for this parser that subjects are in Spec of IP.
Parameters are incorporated by adding constraints on the schemas that are

automatically expanded. For example, the rule that reads something like, -

- “XP derives X1 followed by the specifiers of X1 if the parameter specFinal
holds such that XP is a maximal projection and X1 immediately projects
to XP” can be written as follows, where we leaved undefined the obvious
auxiliary predicates. A schema compiler turns this form into an actual
context-free rule by grounding through the lexicon (the parser compiler
lets X range over the requisite lexical categories plus the parameter settings,

126 Linguistics and Computation

valid specifier and complement structures for particular lexical categories
and items based on thematic roles). For instance, for V= persuade in
English the system automatically adds the rules,

(7) VP— NP CP

To factor in NP movement at S-structure is actually now easy because
empty NPs are already nondeterministically generated by existing covering
grammar rules: all Argument positions (A-positions, subject and object)
and Specifier of COMP already admit empty noun phrases at D-structure.
To cover scrambling (for Japanese), we adopt an adjunction analysis of NPs
at VP and IP, adding a single context-free rule. Other cases of movement,
such as verb lowering and adverbial adjunction, are added in a case-by-case
way.

This completes the outline of how the S-structure covering grammar is
built. The actual phrase structure grammar constructed for S-structure is
language-dependent. For instance, the X-bar schema expansions will be dif-
ferent according to the values of certain parameters such as [£specInitial,
+headInitial], and the lack of wh-movement in syntax will bar certain
movements in Japanese. Summarizing the system for the two grammars we
have:

Language | X-bar prototype | Empty category | Adjunction | Others
rules rules rules

English 12) 8 6

Japanese | (same) 4 7 2

Precisely because the resulting grammar is small — one of the proper-
ties of principles and parameters theories is to partition constraining work
among different modules — we have only 31 covering grammar rule schemas
for English and 25 for Japanese. We should emphasize this key property
of a modular system: the small grammar size allows us to consider more
powerful computational engines than are ordinarily deployed, in particular,
canonical LR(1) parsing that allows optimal early error detection, a must
for a system that has to dispose of bad candidate structures as quickly as
possible. This is one of the key techniques that was unavailable to TGG
parsers two decades ago. Of course, the LR parser itself must be extended
to handle ambiguity via the use of multiple action entries and backtracking,
but this is now also a standardly available technology. The important point
is that with a small grammar size, we can now achieve a balance between
overgeneration and efficiency: the covering grammar and associated parser
does select few enough candidate S-structures to make the system usable.

Transformational Grammar 127

6.2 Stage II: Representing and Using Linguistic Principles

Given some (small) set of quasi-S-structures, Stage II of the parser next
applies the remaining generators and filters to arrive at zero or more logical
forms for the sentence. This is done by encoding the principles almost
directly in PROLOG and then applying them to the quasi-S-structures. The
exact order in which this is done has obvious implications for processing
efficiency. First, principle application obviously must be subject to the
logical dependenc1es of the theory, for instance, the Case Filter cannot
apply until Case Assignment has been carried out.

The reader will note, however, that the principle ordering as specified
does some unnecessary work in that Case Assignment and the Case Filter
are applied to 49 structures, when in fact only 33 of these will survive Sub-
jacency. Thus it would save computational work to order Subjacency ahead
of the Case operations in this case. Plainly, following standard practice in
artificial intelligence search techniques, the operative ordering principle is
to delay hypothesis generation (expansion of the search tree) as long as
possible, and apply constraints as early as possible. For a given sentence,
up to an order of magnitude change in parsing time is possible, given an
optimal principle ordering. We have explored this kind of reordering in
three ways; see Fong and Berwick 1991 for details.

In one approach, the user may statically reorder the principles. In a
second method, the system dynamically selects a tentative optimal order-
ing for a given sentence based in part on surface sentence cues and a voting
scheme potentially based on the previous history of a given ordering’s suc-
cess rate. The implications of this for human sentence processing, namely,
a systematic theory of individual processing time variation, has not escaped
our attention but goes far beyond the scope of this article. Finally, we have
systematically investigated interleaving principles, that is, the simultane-
ous application of two or more principles. For instance, we could enforce
simultaneously all X-bar constraints, licensing of syntactic adjuncts, and
a condition that traces cannot have Case. While this particular combi-
nation improves computation time, in general, contrary to intuition and
some published accounts, combining all principles does not always improve
performance, for more complex reasons that cannot be discussed here but
roughly have to do with the computational complexity of each principle vs.
the nondeterminism in building a set of S-structures. The current system
can in part automatically determine which mterleavmg possibilities will
prove eflicacious.

Returning now to our main theme of representing linguistic principles,
earlier we stated that a primary objective of this parser is to represent
linguistic principles directly and transparently. To be concrete, how is Case
Assignment carried out?

128 Linguistics and Computation

In the theory we have implemented, there is both structural and in-
herent Case assignment: assignment according to tree configuration and
assignment according to the inherent properties of a lexical head item. For
example, Structural Case Assignment is standardly done by assignment un-
der government and adjacency (if that holds in a language). To implement
this, the parser walks through a candidate structure, and, when it encoun-
ters a configuration of Case Assignment, that is, a maximal projection
configuration CF with components Assigner (the structural Case assigner),
Case (the Assigner assigns this Case) and an NP (the Case receiver), it
first checks that (i) the Assigner governs the NP in the configuration; (ii)
the NP has the feature np; (iii) the Assigner is in fact a Case Assigner,
as determined previously; and (iv) the Assigner is adjacent to the NP, if
the Case Adjacency parameter holds. If all this is true, then structural
case assignment is carried out, by making the NP have the feature Case,
and checking that the NP’s morphology is compatible with the Case just
assigned.

Let us expand on this English statement to see how it is implemented.
The actual declarative statements that implement Structural Case Assign-
ment are completely straightforward. First we must state that Structural
Case Assignment (sCaseAssign) has been satisfied. This holds whenever,
in all tree configurations CF, if CF satisfies the properties of structural case
configuration (sCaseConfig), namely, a relation between CF, the Assigner,
the Case to be assigned, and an NP, then assignment of Case (assignCase)
also holds between the Assigner, Case, and NP:

:- sCaseAssign
in_all_configurations CF where sCaseConfig(CF,Assigner,Case,NP)
then assignCase(Assigner,Case,NP).

Now we must declaratively state the two predicates used above. We
can directly translate the English given earlier for the first, sCaseConfig,
adding a constraint (not discussed here) that the NP does not have the
feature of indirect Object. In this statement, cat simply holds when a node
has a category, possibly with features as given in lower case, and max holds
when that category is maximal. Note that it is precisely here where the
“matching” process implicit in interpreting declarative statements comes to
the fore: the system “finds” the category C of configuration CF by starting
out with C as a variable, without a value given to C, as if we were attempt-
ing to find the truth value of a Boolean statement in logic. The interpreted
statement returns whatever sequence of assignments to C that makes the
relation cat (CF, C) hold; similarly, in turn, once that stream of values is
set, those values are tested by the predicate max(C).

Transformational Grammar 129

sCaseConfig(CF,Assigner,Case,NP) :- % Case assign in config. CF
cat(CF,C), % when CF is a category C
max(C), % and it is maximal
governs(Assigner ,NP,CF), % and it governs a node NP
cat(NP,np), % andnode has feature np
\+ NP has_feature indir0bj, % and the NP is

: % not an indir. obj.

caseAssigner(Assigner,Case), % and the Assigner

% is a Case Assigner
adjacent(Assigner,NP,CF)if caseAdjacency. % and the Assigner is

% adjacent to the NP if the

% caseAdjacency parameter

% is true.

Putting aside for the moment exceptional Case marking and the require-
ment to transmit Case in certain situations, then we can state the second
- predicate very simply as well:

assignCase(Assigner,Case,NP) :- % Case assignment holds
NP has_feature case(Case), % when NP has feature Case
morphCaseAgreement (NP,Case). % and that Case agrees
% morphologically with NP,
% if any.

We should stress that this declarative way of putting matters does not
“make” or “assign” the NP the feature Case. Rather, the system will non-
deterministically generate both possibilities where the NP does not have
the feature Case, and where it does, in an attempt to match against this
filter’s logical template. Only in this last case will the assignCase predi-
cate be true, as required to pass the filter. In this way, the candidate trees
are successively generated and pruned.

7 Linguistic Coverage

To give some idea of the range of examples that the parser can handle, Ta-
ble 2 gives a partial list of the sentence types from LU that the parser can
successfully parse or reject, as appropriate, along with the chapter and ex-
ample sentence number from LU. About 300 sentence example types can be
processed, corresponding to most examples of current interest in linguistic
theory, from quantifier raising, to passivization, to exceptional case mark-
ing, to superiority effects (Who will read what/vs. * What who will read).
As far as we know, this is the most comprehensive system of its kind.

130

(1:12a)
(1:15a)
(1:15b)
(1:18)

(1:19)

(1:21)

(1:22)

(1:24a)
(1:24b)
(1:25)

(1:352)
(1:35b)
(1:36a)
(1:48)

(1:36¢)
(1:49a)
(1:49b)
(1:49¢)
(1:52a)
(1:52b)
(1:53a)
(1:59¢)
(2:19b)

(2:26a) -

(2:26b)
(2:45a)
(2:88)
(2:91)
(2:103)
(3:17)
(3:18)
(3:19)
(3:20)
(3:46)
(4:3)
(4:4)
(4:7a)
(4:7b)
(4:8a)
(4:8b)
(4:18)
(4:20)

Someone likes everyone

Who that John knows does he like
He likes everyone that John knows
It is likely that John is here
*Tt is likely John to be here

I am eager for John to be here

* am eager John to be here

I believe John to be here

I believe John is here

#] believe sincerely John to be here
I want to be clever

*] believe to be clever

John was persuaded to leave

John was arrested by the police
*John was wanted to leave

1 believe John to be intelligent

*t was believed John to be intelligent

John was believed to be intelligent
* am proud John

I am proud of John

I wonder who you will see
*What does Bill wonder who saw

Their pictures of each other are nice

John likes Mary’s pictures of him

*John likes Mary’s pictures of himself

Who does he think Mary likes

*(I am proud of) my belief to be intelligent

Linguistics and Computation

Quantifier raising
Movement & Condition C

Simple Case theory
Ezceptional Case Marking
(Ecm)

Case Adjacency
Optional vs. obligatory
Ecm

Ordinary passivization

Ezceptional passivization

Genitive Case realization

Wh-movement
and Subjacency
Simple Binding theory

Strong crossover
Government of PRO

The men think that pictures of each other will be on sale
*The men think that Mary’s pictures of each other will be on sale

Which report did you file without reading

Parasitic gaps

*Which book did you file the report without reading

*Who filed which report without reading
*The report was filed without reading

/ Resumptive pronoun

*The article which I filed it yesterday without reading is (over) here

*John is crucial to see this

John is certain to see this

Who do you think that John saw
Who do you think John saw

*Who do you think that saw Bill
Who do you think saw Bill

*John is believed is intelligent
*John seems that it is likely to leave

ECP

That-trace effect

Raising and
Super-raising

(Table 2 continued on next page)

Transformational Grammar Rt 131

(4:21b) Who will read what Superiority

(4:21c) *What will who read

(4:35a) Why did you read what Compl./Noncompl.
(4:35b) *What did you read why asymmetries

(4:45a) Who believes the claim that Mary read what Subjacency and LF
(4:45b) *What do you believe the claim that Mary read

(4:57) *Who does Mary wonder why John hit Ecm and movement
(4:58) *Why does Mary wonder who John hit

Table 2: Some of the examples from LU that are analyzed correctly by the
English version of the principles and parameters parser.

8 Parameterizing the parser: Japanese

While the substantial coverage of a set of linguistic examples for English
may be impressive, the “proof of the pudding” for the principles and param-
eters parser is, of course, whether one can easily switch from one language
to another by varying just a small number of parameters. In fact this ap-
pears to be possible. In this section we show how the parser can easily
be reparameterized to handle the wh-movement sentences found in On the
nature of proper government (Lasnik and Saito 1984), listed in Table 3 (sen-
tence numbers in the table refer to the original cited article). In passing, we
shall show how the parser may be used in practice, to debug the principles
as implemented, and actually “discover” valid linguistic derivations that
might otherwise not have been found.

To begin, these Japanese sentences display many familiar typological
Japanese-English differences. Let us review these here.

e SOV Language.

As is familizir, Japanese is often classified as a Verb Final or SOV
(Subject-Object-Verb) language. Heads such as verbs and adjec-
tives are preceded by their objects and modifiers. However, subjects
do normally appear before verbs and objects, as in English. This
distinction can be encoded by two binary parameters that specify
head/complement and specifier/head order, as is familiar. The X-
bar system compiles out schemas with heads last rather than first,
as mentioned in the previous section. (To a first approximation, this
does not alter the LR machinery in terms of the amount of ambiguity
as measured by alternative state changes, but see Fong and Berwick
1992 for additional discussion.) We also assume without further dis-
cussion the existence of a VP node in Japanese.

132

(6)

(32)

(37a)

(37b)

(39a)

(39b)

(41a)

(41b)

Linguistics and Computation

Watashi-wa Taro-ga nani-o katta ka shitte iru

(I know what John bought)

Basic wh-questions

Kimi-wa dare-ni Taro-ga naze kubi-ni natta tte itta no
(To whom did you say that John was fired why)

Good in Japanese but not in English

*Meari-wa Taro-ga nani-o katta ka do ka shiranai
(Mary does not know whether or not John bought what)
Semantic parallelism: non-absorption of ka do ka
Taro-wa naze kubi-ni natta no
(Why was John fired)

Biru-wa Taro-ga naze kubi-ni natta tte itta no

(Why did Bill say that John was fired)

Comp-to-Comp movement at LF

Taro-ga nani-o te-ni ireta koto-o sonnani okotteru no
(What are you so angry about the fact that Taro obtained)
Complement-noncomplement asymmetries

*Taro-ga naze sore-o te-ni ireta koto-o sonnani okotteru no
(Why are you so angry about the fact that Taro obtained it)
Hanoko-ga Taro-ga nani-o te-ni ireta tte itta koto-o sonnani
okotteru no
(What are you so angry about the fact that Hanoko said that
Taro obtained)

*Hanoko-ga Taro-ga naze sore-o te-ni ireta tte itta koto-o sonnani
okotteru no :
(Why are you so angry about the fact that Hanoko said that
Taro obtained it) ’

Kimi-wa nani-o doko-de katta no
(Where did you buy what)

Kimi-wa nani-o sagashiteru no
(Why are you looking for what)

Multiple-whs in Comp

Table 3: Wh-movement examples in Japanese from Lasnik & Saito

Transformational Grammar ‘ 133

o Scrambling.

Japanese phrase order is more or less free, apart from the Verb Final
constraint. Direct and indirect objects may be interchanged, and

appear before the subject in an initial position (which is evidently not

a process of topicalization). Typical examples cited by Hoji (1985) of
John gave Mary a book are these:

(8) (i) [John-ga [ve Mary-ni hon-o agetal)

(i) [homi-o [z John-ga [ve Mary-ni t; ageta]]]
(iii) [p Mary;-ni [;p John-ga [ve t; hon-o agetal]]
(]

)
iv) [ip John-ga [ve honi-o [yp Mary-ni t; agetal]]

.

Movement can account for this. Suppose the canonical order is “sub-
Ject” followed by “indirect object” followed by “direct object,” as
in (8)-i. The direct object, hon-o in this case, is free to move (by
VP-adjunction) to a position in front of the indirect object Mary-ni,
as in the fourth example above, or to a sentence-initial position (by
S-adjunction) as in the second. Similarly, the indirect object may
move to a sentence-initial position as in the third example. We take
the elements ga, o, ni, etc. to be essentially case-marking, clitic-like
particles that do not project to phrases. (We shall see immediately
below that in more complex examples the scrambled element can it-
self be further moved at LF.) In addition, we alter Structural Case
Assignment slightly to transmit Case from an A(argument) to a non-
Argument position, since a scrambled NP will be adjoined to VP, and
would otherwise be unable to receive Case. (This is a temporary move
that we have used pending a better account.) 7

o Empty subjects.

As is also familiar, Subjects and other NPs can be omitted in a “Su-
per Pro Drop” language like Japanese. (In general the conditions that
determine which elements can or can not be omitted are largely de-
pendent on discourse considerations, which are not considered here.
However, as pointed out earlier, the system can be modified to take
“context” into account in a general way, if a theory of context be-
comes available.) As an example, consider the second sentence below
(taken from Makino and Tsutsui 1986).

"We scramble only from direct ob ject positions here, even though it is straightforward
to scramble from indirect object positions. Informally, we have noted that scrambling
from the indirect object greatly increases computation time. A tighter set of constraints
on scrambling seems called for.

134 Linguistics and Computation

(9) (i) Taro-wa sono mise-de nani-o kaimashita ka
(What did Taro buy at the store?)
(ii) Pen-o kaimashita
(He bought a pen)

Standardly, the omitted subject is actually represented in syntax by
a phonologically empty pronoun.® Again following conventional prac-
tice, we represent the binary option that determines whether this is
available or not as the pro-drop parameter. For the initial parses de-
scribed in this section, we do not extend this ellipsis to non-subject
positions, though again this may be easily changed, simply by saying
that pro may occupy other NP positions (though as far as we can
determine informally with a great loss in efficiency).

e No visible Wh-movement.

Following much current work in linguistic theory (Huang 1982), we
assume that Japanese LF looks like English LF: there is no wh-
movement in syntax, but there is movement at LF. Thus, the option
of whether to allow wh-movement between D- and S-structure is a
language parameter. As we review below, it is this distinction that
enables one to explain a variety of facts including why the counterpart
of a sentence such as (6) in Table 3 (which is well-formed in Japanese)
is ill-formed in English.

To be sure, this is not in any way meant to be a complete character-
ization of the differences between these two languages. We defer for now
all the intriguing questions in Japanese of double Subjects, Case marking,
passives, causatives, and so forth. Rather, it is sufficient to demonstrate
what we set out to show: to cover the examples shown in Table 3 with just
a handful of parameter switches. These parameters are shown in Table 4,
with English-Japanese differences starred.® This table shows the actual
PROLOG code parametric differences that were entered in order to get the
parser to parse Japanese rather than English—in effect, just four binary
switches to make the system Head final; allow pro-drop everywhere; elimi-
nate adjacency for Case marking and thus admit scrambling; and eliminate
wh-movement in syntax for Japanese.

It is remarkable that the same set of principles for English can then re-
combine in different ways to handle the Japanese examples. The important

8We follow Takezawa. (1987) in making this empty category a small pro. This option
is evidently not available in English.

9Some of these parametric variations lead to implicational universals: for instance,
example (187) in Lasnik and Saito (1984) states that if a language has syntactic Wh-
movement then it obeys the Wh-Comp requirement at S-structure.

Transformational Grammar

135

English and Japanese parameter settings

English

Japanese

Spec order

*Head order

Agreement

Bounding

*Case Adjacency
*Wh in Syntax

*Pro-Drop

speclnitial.
specFinal :- \+ speclnitial.

headlnitial.
headFinal :- \+ headInitial.

agr(weak).

boundingNode(i2).
boundingNode(np).

caseAdjacency.

whInSyntax.

:- no proDrop.

speclnitial.
specFinal :- \+ speclnitial.

headFinal.
headInitial :- \+ headFinal.

agr(weak).

boundingNode(i2).
boundingNode(np).

:- no caseAdjacency.
:-no whinSyntax.

proDrop.

Table 4: The differences between English and Japanese are captured by just
a few parameter switches, shown here as actually written in the PROLOG
program. Distinct parameter settings for the two languages are marked by

asterisks.

point here again is that the system gets (by design) precisely the parses
required, and blocks ungrammatical sentences by the same means as well.
Figure 3 shows the system in operation for the first five sentences from
Table 3, while Figure 4 displays the LFs for the sixth example sentence.

Let us review these.

o Wh-movement at LF.

As shown at the top of the snapshot in Figure 3, nan: has moved
at LF to a position that has scope over the embedded sentence (as
indicated by the bracketing) leaving behind an (LF) trace LF-t to be
interpreted as a variable in its original position.

Because we want our Japanese and English grammars to be as uniform
as possible and follow a full CP/IP system, the parser moves this item
to a Spec of CP position. Additional constituents moved at LF are
adjoined to this Spec position. In this example the question particle
ka fills the Head of the embedded CP (=C2), and nani fills Spec of
this CP to the left, immediately after the C2 bracket in the figure.

The key point is why has this (correct) parse been produced with
nani moved, rather than any others? Remember that the system
will nondeterministically try out all optional possibilities. So the

136 Linguistics and Computation

Principle-and-Parameters Parce

Build LR Graph Language Op Status Options Parsers Run Screen Sentences Time Tracing

© Run Sentences (Examples) a2, EG&

a2 Natashi-wa Taro-ga nani-o katta ka shitte iru

LF: [e2li2(np Uatashi]‘top101 [1LveLvpLc2(np nanil-ace [ciliz [np taro] -nona [lve LFt2[v c(f*;R)3 [v katta]4]4] 0
2

¢ 110c kal]1lv shittel 1 [ve 10 1AGR) [v iru] 3 11[c]]
s 6 1 6 1

3

No (more) parses

a6 Kimi-wa dare-ni Taro-ga naze kubi-ni natta tte itta no

LF: [c2[aovNP dare] -d.st_1 [aov naze]2]2[c1 Di2[NP kinil-topic [1[ve LFI:1 [vilc2 Lf-'t2 [c1liz[np taro] -mm4 [i1Lve
3

=

Fe_[vp[ne kubil-dat [v 1I(AR) [v natta]] 11 D 13 0c ttel110v (AGR) [v fttal 1 11 e 1] (c nolll
2 5 4 6 6 4 3 77 3

R A

NNo (more) parses

l:> Run Sentences (Examples) e32 (keywords) :Statistics (Y or N [default Nol) Yes
Nea2 *Mfeari-wa Taro-ga nani-o katta ka do ka shiranai

NNo (more) parses

N! 6 Parse S-structure 1 1 Uh-novenent in Syntax 5 1 Condition C

6 51 Trace Theory 11 Theta Criterion 1 1Ece

NS! 49 Subjacency 1 1 D-structure Theta Condition | 4 LF Movement

N49 ! Assign Inherent Case 1 5 Free Indexation 4 3 FI: License operatorsvariables
N! ! Assign Structural Case 55 Functional Determination 3 3 ECP at LF

N! ! Case Filter 5 5 Control 3 8 Wh Comp Requirenent

N! | Trace Case Condition 5 5 Condition A

N1 ! Assign ThetaRoles 55 Condition B

D Run Sentences (Examples) e37a, E37b

37a Taro-wa naze kubi-ni natta no
F: [cz[apv neze]1 [c1liz[np taru]-topicz [nlve LFt1 [vene kwi]-data v l(ﬂt\!?)2 v nattal 4]4]] [lt2]J [c o111

e
L

2%

7

No (more) parses
e37b Biru-wa Taro-ga naze kubi-ni natta tte itta no
LF: [c2[aov r\aze:]1 [caliz[ne biryl -mpic2 [1nlvec2 LFt1 Cc1lizlnp taro] -nona D1 Lve LFL‘1 Lve[ne kui:i]-dat:4 Cv 1(AcR

v natta]l 1 17 D2 110c tted110v 1(AGR) [v fttal 1 1 Dt 11(c moll]
3 55 3 2 66 2

o (more) parses

i

Figure 3: Sample sentences from Lasnik & Saito, as shown in a computer
snapshot.

real trick is ruling out the bad possibilities, not generating the good
one. Among these failed possibilities are candidates where nani is
not moved at LF, candidates where the incorrect phrase structure
is built, and so forth. The good option is where nani is moved at
LF, leaving behind an LF trace. We can divide our question then
into two parts: first, Why is the correct phrase structure built? and
second, Why does only the right LF-movement possibility survive the
principle gauntlet?

First, as we described earlier, the correct branching phrase structure is
built simply because the LR(1) parser has the rules to build it af legst
that way. Although the LR machine may build more structures than
ultimately required (to be precise, in this case, five others), among
them will be just those that obey the branching conditions of the
language in question. This is forced by the construction of the cover-
ing LR(1) machine given the parameters headFinal and whInSyntax.
Note also that the covering grammar will not predict any empty cate-
gories in this example, simply because they cannot be introduced into
the quasi-S-structure at all; they are just not part of the S-structure

Transformational Grammar 137

covering grammar for Japanese (putting to one side inflection-verb
Head movement).

Second, the correct movement is forced by the fact that Japanese
does not have wh-movement in syntax and English does, plus a uni-
versal constraint (posited by Lasnik and Saito 1984), the Wh-Comp
Requirement, that both English and Japanese must meet: a +wh
Comp must have a +wh head and a —wh Comp must not have a +wh
head. In English, this constraint must be met at both S-structure
and LF, while in Japanese, lacking Wh-movement in syntax, it holds
just at LF. A Comp is +wh if marked by its head or, in English, by
a Q(uestion)-operator, if the specifier is +wh. We must modify this
constraint slightly in our X-bar system, since the parser has both a
Spec and Head position: since the wh element is moved into Spec,
the revised constraint says that a +wh Comp must have a 4+wh Spec,
and a +wh Head, if there is one.

In the current Japanese example, the embedded CP is marked +wh by
its head ka, as indicated in the lexicon. Nani must move because by
assumption wh elements are operators and to be licensed, an opera-
tor must bind something, either an S-structure or LF-trace. Only the
second option is possible in Japanese. So the movement must occur
or else the operator won’t be licensed. The movement is licensed be-
cause it passes the Wh-Comp Requirement, as modified above. Thus,
structures where nan: is not moved do not meet this restriction: if
the Spec of CP is left empty, the Wh-Comp Requirement is unmet. In
fact, two of three final candidates are blocked in just this way, leaving
the single correct parse shown. Of course, the LF trace left behind
must also meet the Empty Category Principle at LF, and it does: it
is lexically governed as a complement of the verb katta, ‘buy,’ as may
be seen in Figure 3. So all is well.

o Multiple wh-elements at LF.

Consider example (6) in Figure 3. There are two wh-elements: (1)
dare (‘who’) the indirect object of itta (‘said’ as in “said something
to somebody”), and (2) naze (‘why’). As the second parse in Figure 3
shows, both elements will move at LF to a sentence-initial position,
with naze moving Comp-to-Comp; this is the LF given by Lasnik and
Saito (1984). The usual ambiguity arises. We can gloss the sentence
meaning as a double question: “for which z, = a person, and for what
reason ¥y, you said y (a reason such that [taro was fired]) to z.”

Why does this sentences pass in Japanese but not in English? Again
the reason is the lack of wh-movement at S-structure in Japanese

Transformational Grammar | 139

leaving behind an intermediate trace governing the original trace of
naze.

e Complement & noncomplemenf asymmetries; Scrambling and unez-
pected parses; Trace deletion.

Finally, consider example (39a) (and the corresponding illicit 39b)
from Figure 3, repeated here, where a complement wh but not a
noncomplement wh can be extracted from a complex NP:

(10) (i) Taro-ga nani-o te-ni ireta koto-o sonnani okotteru no
(What are you so angry about the fact that Taro obtained)

ii) * Taro-ga naze sore-o te-ni ireta koto-o sonnani okotteru no
g
(*Why are you so angry about the fact that Taro obtained)

This example illustrates several Japanese typological differences with
English. The subject of the matrix clause ‘you’ has been omitted.
Nani and te (‘hand’) have been scrambled, with the direct object
marked -0 now appearing in front of the indirect object te. Our
relaxation of the Case Adjacency parameter and the rule that allows
adjunction of NP to VP, plus transmission of Case to the scrambled
NP will let this analysis through. The LF for this sentence might be
glossed something like this:

(11) for what z, pro is so angry about the fact that Taro obtained z

In this example pro denotes the understood subject of okotteru (‘be
angry’). Note the LFs actually returned by the system in Figure 4.
As one can see, the system does correctly recover this form, as the
last LF in the snapshot. However, it also recovers three additional
LFs:

(12) for what z, Taro is so angry about the fact that pro obtained z

The parser has also admitted the LF where the embedded subject
Taro is interchanged with the matrix subject pro.

Before we address where the additional ambiguity comes from, we

should account for the expected derivation itself. Nani (‘what’) un-

dergoes both S-structure and LF movement. At S-structure, the direct

object “scrambles” by VP-adjunction, leaving the trace NP;. At LF,

nani undergoes wh-movement into the specifier position of CP. This

would leave an illicit intermediate trace in the adjoined VP, as indi-
- cated here:

140

Linguistics and Computation

Principle-and-Parameters Parse

Build LR Graph Language Op Status Options Parsers Run Screen Sentences Time Tracing I

N
N\

R

N

7

[{® Run Sentences (Exanples) e3%a

Ne3%a Taro-ga nani-o te-ni ireta koto—-o sonnani okotteru no

: [c2[ne nani]—aec1 Lc1Di2[ne taro] -nnn2 [lveLvpIne [c2[i2 p"°3[“ [ve []1[VP [np tel -dat4 [v1 [NPt-H-P]1[V l(r’GR):3
NUIv ireta]l 1 111 [110c]]n kotol]-acc [v[aDY sornanillv okotte] 1 1 [ve 101 1¢AR) [v irul] 11(c nolll

N 55 3 3 6 6 7 2 72

NLF:

[c2[nP nani) -aec1 Cc1Diz[nP taro] —non2 D lvelvp[np[c2li2 proz [4lve(] . [vpne tel —data [v1InpPe-A-P) . v |(FIZ-R)2

[v iretal 1 111 [11Cc]1ION koto]]-acc_[v[aDY sonnani] [v ckottel 1 3 [ve_J 0 w(AGR)_[v irul_J J1Lc moll]
4 4 2 5 6 6 7 2 72
LF:

[c2[Np nani] -ace [c1li2[np taro] —mﬂ2 [lvelveInp[c20i2 pro:3 [ulve(] , Cve(np tel —dat4 [v1Inpe-A-P] . v t(mR):3

NLv iretal 5] 5]]:I [utsll [cI1Dn koto]]-acce[v[hov sonnani] [v okm,g]7] 7] [vesl O I(PGR)2 [v imJB]2]] [c nol]]
NLF: [c2lwe nani]-aoc [e1li2 pro DnlveLvpInp[c2[i2[nP taro] -non [n [vPU Cvpne be]-dat. [v«[npc«ﬂ—P] v mmn)a
N L iretal]]J] [It]J[c]][n kotc]]-acc [v{aov somanil [v okatte]]] [vc 10 |(FIR) [v irv]]]][c m]]]

Ho (nare) parses

Figure 4: Japanese examples illustrating ambiguous logical forms and
scrambling.

(13) [cp [ne mani]-accy ...

[Il [VP [VP [NP [CP [IP pro [n [vp NP-t; ...

This structure should be ruled out: the intermediate LF trace is
barred by the Empty Category Principle because it is in a non-
argument position, and it is neither lexically governed as the comple-
ment of a verb nor antecedent governed by nani (too many barriers
intervene, with two CPs and an NP, at least, blocking antecedent gov-
ernment). This is just what we dlscovered when the parser was first
run on this example sentence.

To repair this example, observe that this is precisely the situation
where a trace deletion approach would work. We therefore imple-
mented something along these lines, permitting LF trace deletion in
just this configuration. Thus we find the form as actually shown in
the top line of every LF in Figure 4, with the LF trace being subse-
quently deleted, as indicated by [VP []1]. This element is thus no
longer subject to the Empty Category Principle, and the structure
passes. In effect, we have optional deletion of LF traces only.

Turning now to the ambiguity the parser discovered, the basic pre-
diction seems to be correct. The sentence happens to be ambiguous
with respect to the two basic interpretations.!?

10This was pointed out by Pesetsky, and confirmed by Saito. However, presumably
the use of wa rather than ga and intonational pauses could be exploited by a computer
(or a person) as a surface cue to rule out more general ambiguity in this example and
others like it. See Fong and Berwick (1991) for a discussion of how to integrate sentence
surface cues into the principle-based system.

Transformational Grammar 141

For completeness, here are the three variants that correspond to the
first three LFs reported by the parser. S. Miyagawa (p.c.) informs us
that the last two, given proper context, are in fact possible.

1. pro is coreferent with koto (‘fact’):
for what z, Taro is so angry about the fact that the fact obtained
T
This interpretation can be eliminated by imposing selectional
restrictions on the possible “agents” of okotteru (let us say that
they must be animate).

2. pro is coreferent with taro:
for what z, Taro is so angry about the fact that Taro obtained
T

3. pro is free in the sentence:
for what z, Taro is so angry about the fact that (someone else)
obtained z

To summarize, using a very simple and automatic parameterization,
exactly as suggested by theory, we can accommodate a range of Japanese
constructions that differ markedly from English. Without any rule repro-
gramming or changes in the principles or parsing algorithm we can obtain
a parser for Japanese that works as the English system did (in particu-
lar, there are no difficulties with Head final constructions). This is the
promise of the principles and parameters theory, now met by a concrete
implementation.

9 Conclusions

Coming full circle then, just as it seems altogether fitting that a historical
celebration of a linguistics department should be in part historical, it seems
particularly fitting that just in time for this celebration we have been able to
develop a full, efficient parser for TGG. The barriers have at last come down:
it took a quarter-century of research into constraints on TGG—in particu-
lar, restrictions on movement and empty categories along with a modular,
declarative design—and a quarter-century of research on computation—in
particular, LR parsing and its integration with an efficient system for non-
deterministic, declarative computation (here, PROLOG). What lies in store
a quarter-century ahead remains hidden. No doubt our current views will
look as curious to us then as the MITRE system does now. However, if we
are on the right track, then the same lessons of constraint and efficiency
that guided work in the 60s until the current day will continue to apply
in full force into the foreseeable future—more than enough of an historical
moral with which to conclude.

138

Linguistics and Computation

coupled with the Wh-Comp Requirement. Assuming the particle no
marks the Comp as +wh, then for CP to receive a +wh Spec, both dare
and naze must move, as in the previous example, and the candidates
where these elements do not move are ruled out.

All other options explored by the parser are ruled out. If the inter-
mediate trace is not present, or if dare as an NP moves into Spec first
and naze is then adjoined to it, then the base trace is not properly
governed, with CP or NP as barriers, respectively. The (declaratively
stated) Empty Category Principle blocks these possibilities. Thus
only the winning output structure shown can run the entire constraint
gauntlet.

Note that the corresponding English sentence would be ruled out:
example 4:35b in the previous section is similar (*what did you read
why). Because English has movement at S-structure, the LR machine
(not a later operation) will put what in Spec of CP, and place an
empty category after read. Why must move as an operator as before,
but the LF trace of why cannot be properly governed because it is
adjoined to the NP what; this NP acts as a barrier for proper gov-
ernment, ruling out the possibility of antecedent government. The
LF trace cannot be lexically governed either by read since it is not
a complement. In this way, the parser captures a basic difference
between English and Japanese in the same way, while maintaining a
single Empty Category Principle.

Nonadsorption/semantic parallelism and the Wh-Comp requirement.

Sentence example (32) in the table illustrates another Japanese gram-
matical effect. Evidently the question element ka do ka (‘whether or
not’) and the wh phrase nani (‘what’) cannot both appear in the same
(lower) Comp at LF. The relevant condition is one of “semantic par-
allelism,” 'which we have implemented by a feature unification check.
We simply add the feature yn in the lexicon to items such as ka or
ka do ka, but not to nani, and require this feature to be compatible
with the element in Spec. The example output in Figure 3 shows that
in fact three candidates are produced by the parser but none of them
meet the Wh-Comp Requirement, so the sentence is blocked.

Comp to Comp movement at LF.

Like example sentence (6), example sentence (37b) (‘Why did Bill say
that John was fired’, literally, ‘fired’="‘cut off at the neck’) shows how
naze can move at LF out of its position adjoined to the verb natta,
first to the lower Spec of CP, and then to the Spec of the matrix CP,

142 : Linguistics and Computation

References

Berwick, Robert C. 1985. The acquisition of syntactic knowledge. Cam-
bridge, MA: MIT Press.

Chomsky, Noam. 1986. Barriers. Cambridge, MA: MIT Press.

Fodor, Jerrold, Thomas Bever, and Merrill Garrett. 1974. The psychology
of language. New York: McGraw-Hill.

Fong, Sandiway. 1991. Computational properties of principle-based gram-
matical theories. Ph.D. dissertation, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute of Technol-

ogy.

Fong, Sandiway and Robert C. Berwick. 1991. The computational im-
plementation of principle-based parsers. In M. Tomita (ed.), Current
issues in parsing technologies, pp. 9-24. Norwell, MA: Kluwer.

Fong, Sandiway and Robert C. Berwick. 1992. Cartesian computation.
Cambridge, MA: MIT Press.

Friedman, Joyce. 1971. A computer model of transformational grammar.
New York: American Elsevier.

Hoji, H. 1985. Logical form constraints and configurational structures in
Japanese. Ph.D. dissertation, Department of Linguistics, University
of Washington, Seattle.

Huang, James. 1982. Logical relations in Chinese and the theory of gram-
mar. Ph.D. dissertation, Department of Linguistics and Philosophy,
Massachusetts Institute of Technology.

Kolb, Hans and Craig Thiersch. 1990. Levels and empty categories in
a Principles and Parameters approach to parsing. In H. Haider and
K. Netter (eds.), Representation and derivation in the theory of gram-
mar. Dordrecht: Kluwer.

Lasnik, Howard and Mamoro Saito. 1984. On the nature of proper gov-
ernment. Linguistic Inquiry 15:2.235-289.

Lasnik, Howard and Juan Uriagereka. 1989. A course in GB syntaz.
Cambridge, MA: MIT Press.

Makino, S. and M. Tsutsui. 1986. A dictionary of basic Japanese gram-
mar. Tokyo: The Japan Times.

Transformational Grammar 143

Maratsos, Michael P. 1978. New models in linguistics and language ac-
quisition. In M. Halle, J. Bresnan, and G. Miller (eds.), Linguistic

theory and psychological reality, pp. 247-263. Cambridge, MA: MIT
Press.

Marcus, Mitchell P. 1980. A theory of syntactic recognition for natural
language. Cambridge, MA: MIT Press.

Nozohoor-Farshi, R. 1987. Context-freeness of the language accepted by
Marcus’ parser. In Proceedings of the 25th Annual Meeting of the
Association for Computational Linguistics, pp. 117-122.

Peters, P. Stanley. 1973. On restricting deletion transformations. In
M. Gross, M. Halle, and M. Schutzenberger (eds.), The formal anal-
ysis of natural language, pp. 372-384. The Hague: Mouton.

Petrick, Stanley Roy. 1965. A recognition procedure for transformational
grammars. Ph.D. dissertation, Department of Foreign Languages,
Massachusetts Institute of Technology, Cambridge, MA.

Plath, Warren J. 1976. Request: A natural language question-answering
system. IBM Journal of Research and Development 20:4.326-335.

Stabler, Edward P., Jr. 1992. The logical approach to syntaz. Cambridge,
MA: MIT Press.

Takezawa, T. 1987. A configurational approach to case marking in Japanese.
Ph.D. dissertation, Department of Linguistics, University of Washing-
ton, Seattle.

Zwicky, Arnold, Joyce Friedman, Barbara Hall, and Donald Walker. 1965.
The Mitre syntactic analysis procedure for transformational gram-
mars. In AFIPS Fall Joint Computer Conference, pp. 317-326. Wash-
ington, DC: Spartan Books.

