In Japanese Sentence Processing
Eds. Mazuka et al. Lawrence Erlbaum 1995

mi

Madama Butterfly Redux:
Parsing English and Japanese
with a Principles and
Parameters Approach

Robert C. Berwick
Massachusetts Institute of Technology

Sandiway Fong
NEC Research Institute, Princeton, NJ

INTRODUCTION

Puccini’s familiar opera Madama Butterfly tells of a metamorphosis from Japa-
nese to English and then back again—what appears, at first glance, to be wildly
implausible. In this chapter we attempt a little of the same: probe the validity of
the principles and parameters approach by exhibiting a single parser, parsing
algorithm, and parameterized grammar that works for both English and J apanese,
while at the same time exploring some of the computational differences and
difficulties that arise.

As is familiar, the past decade has seen many advances in answering the
question of how knowledge of grammar is represented; see Chomsky (1981).
There has been a shift in transformational generative grammar from homogene-
ous, language-particular systems of rules such as passive, raising, and so forth
to a highly modular, nonhomogeneous, and parameterized deductive system of
universal principles. We call such systems principles and parameters (P & P)
models, developed from the theory of government and binding (GB). However,
until recently there has been far less progress in constructing efficient parsers
that can take as input orthographic representations of sentences and output the
representations demanded by the P & P approach or GB theory, namely, S-struc-
ture, LF, and D-structure. There has been even less progress in constructing
cross-linguistic systems that do the same: That is, following the P & P approach,
we ought to be able to keep the parser and the grammar essentially fixed, varying

177

178 BERWICK AND FONG

just a few parameters and the lexicon, and yet parse Japanese, say, instead of
English. This is often touted as the litmus test for the P & P approach.

The aim of this chapter is twofold. First, we show that one can now address
all the issues of principles and parameters linguistic theory in a precise compu-
tational framework. We do so by exhibiting a full implementation of P & P
theory, parametrically varying across multiple languages, including English and
Japanese. The parser demonstrates, by construction, that the same set of 25
principles used to parse 286 example sentences in chapters 1-4 of Lasnik and
Uriagereka (1988) can be easily parameterized—with Just four binary switches—
to handle the Japanese Wh-questions in Lasnik and Saito (1984), and much more
Japanese syntax besides. As far as we know, this is the first time that a full-fledged
principles and parameters linguistic theory has been implemented as a parser for
a broad range of constructions across distinctive, multiple languages. The imple-
mentation provides insight into the computational structure of the P & P approach.
In particular: (a) the differences between English and Japanese, (b) how these
differences affect computation and linguistic theory, and (c) whether a single
processing algorithm suffices for distinctrlanguages. For example, it has some-
times been suggested (Mazuka, 1991; Mazuka & Lust, 1988) that the head-final
character of Japanese (as well as other languages) should pose special problems
fora left-to-right (top-down) parser. Does it? Similarly for the omission of NPs,
scrambling, lack of relative pronouns, and so forth (see Mazuka, 1991; Mazuka
& Lust, 1990; Frazier & Rayner, 1988). Superficially these would seem to demand
more guesswork by a parser. Do they?

Although these questions have been posed before, especially from a psycho-
linguistic viewpoint, to our knowledge they have never been thoroughly treated
from a strictly computational vantage point. For example, Mazuka (1991) argues
that “we will first present linguistic data showing that detecting an [empty
category] and computing its possible antecedents during on-line processing is
difficult in Japanese” (p. 5). :

These and other hypotheses can be rigorously investigated from a computa-
tional point of view only with a fully implemented P & P parser. But until now,
there has been no working parser that implements a complete P & P theory.!
Without such a device, informal testing and gedanken experiments can be an
immense problem, because there are Jjust too many possibilities to overlook—with
a few embeddings, possibly many thousands of candidate structures, as we shall
see. We seriously doubt that anyone has ever managed to explore the whole
solution space for such examples, and indeed there are some surprises that arise
as a result.

"To be sure, fragments of such theories have been implemented, but the largest such efforts we
know of (e.g., those of Stabler, 1992) have not been true parsers at all, but proof checkers: One must
supply the parsing “answer” to such systems first (the LF or s-structure forms), and the system
checks that the answer is derivable.

s

A I

8. MADAMA BUTTERFLY REDUX 179

The second aim of this chapter, then, is to show how one can readily do
computational “surgery” to investigate the logical and computational conse-
quences of changes in linguistic theory, arriving at a space of possibilities that
might be further narrowed by additional psycholinguistic evidence. For instance,
one can use such a machine to tease apart the computational effects of Head-final
structure from that of scrambling by building a grammar, J*, that is head-final
and otherwise behaves like Japanese, but does not include scrambling and free
omission of NPs. These experiments are demonstrated later in this chapter.

The results are sometimes surprising, sometimes not. Not surprisingly, by and
large Japanese taxes the parser more: The freedom to drop NPs, scrambling, and
head-final structure generally leads to more computational work expended. More
surprisingly perhaps, note that the parsing engine we use is a canonical LR(1)
parser, the optimum deterministic bottom-up parser, suitably modified to handle
ambiguity. This single algorithm is used for all natural languages—Ileft-branching
as well as right-branching. Thus we do not need to parameterize the parser across
different languages.

At least as far as our analyses indicate, branching direction does not seem to
be an issue with an LR parser, if that machine can be modified to factor out such
effects such as scrambling and free pro-drop in Japanese. To the extent that we
can localize these differences in a precise way, we can partially answer
Hasegawa’s (1990) plea that “algorithms and formalizations do matter if the
issues they [Mazuka & Lust] raise are to be productively discussed” (p. 222).
Putting the same point another way, for Japanese there are just more ways to
guess, even for a bottom-up parser, and we can demonstrate this concretely.

Arriving at more speculative psychological matters then, if one can judge at
all from a machine that operates not quite like a person (for one thing, it can
draw on unlimited lookahead when it has to),2 these results reinforce what has
often been said about the role of context and heuristic strategies in limiting
hypotheses in Japanese sentence processing. If a machine that is in some ways
more powerful than we winds up doing more guessing than we do, then clearly
there is a mismatch somewhere: Machine design and approach, theory, or both
could be wrong. For the required strategies and heuristics, one must turn to real
psycholinguistics as reported in the other chapters in this volume. For the logical
possibilities, though, psycholinguists might well turn to a P & P parser like this
one.

In this operatic sequel, we follow the outline just given. First, we briefly
sketch how the principle-based parser works with the Lasnik and Uriagereka

2On the other hand, it is not immediately clear that this lookahead power alone is necessary. We
have not yet investigated the computational consequences of a bounded version of the same machinery.
In other papers, we have explored an initial attempt to show how a different principle ordering, hence
in a sense a different parser, could be built dynamically given a different past history of sentences
encountered. In this way, context could be given a solid role within the system we have designed.
See Fong and Berwick (1991).

180 ‘ BERWICK AND FONG

theory, using a parasitic gap sentence as an illustrative example and focusing on
the recovery of S-structure. Second, we turn to Japanese and show how simple
parametric variation suffices to cover the Wh-sentence types in Lasnik and Saito
(1984), including LF movement, scrambling, and the like, including some sur-
prising parses. The next section addresses extensions to that system to cover
additional Japanese example sentences, such as questions and embedded relatives.
It then continues by looking at the computational consequences of the resulting
parser, why Japanese is harder even for an LR (bottom-up) parsing machine, and
what can be done to improve matters via techniques drawn from programming
language compilers.

EFFICIENT PARSING WITH PRINCIPLES:
HOW IT CAN BE DONE

The focus of this chapter is not on the structure of the P & P parser per se.
However, because understanding how it works is central to what follows, we
briefly sketch the overall system here. There is neither time nor space here to
justify all the design decisions that were made; complete details may be found
in Fong and Berwick (1991, 1994).

Like all the parsers we know of that use some version of transformational
grammar in the post-Lectures on Government and Binding era, ours carries out
the analysis of an orthographic form in essentially two steps. First, one must
recover some representation(s) of augmented X-bar phrase structure (either partial
S-structures or a pseudo-S-structures), generating all possibilities. This is done
by a full LR(1) parser that uses a 30 rule grammar to generate quasi-S-structures.
We use the term quasi-S-structure because the phrase structure that is generated
does not meet all the constraints on S-structure; in particular, empty categories
are inserted in all possible locations without further checking and without their
features (as traces, pro, etc.) being determined. For instance, the first stage LR
parser assigns the same structure to Bill seems to like ice-cream and Bill wants
to like ice-cream, inserting a generic empty category as the subject of the
complement phrase CP (S).> Later principles must fix this as, for example, a
trace in the first case, but not the second. In particular, chain formation has not
yet taken place. It is this simplification that allows the first stage LR machine
to be small and efficient; it does not try to check all principle conditions at once.*

This two-stage process seems appropriate simply because the predicates of P
& P theories are structural, and it doesn’t make sense to apply, for example,

*We assume the conventional functional category notation, for example, CP = Complementizer
Phrase; IP = Inflection Phrase, etc., and omit indices that indicate head movement for verbs. Spec
and head of CP are referred to as Comp (for Complementizer Phrase).

“For conceptual purposes, this description has been simplified from that of the actual parser,
which in practice permits interleaving of some of the principles; see Fong and Berwick (1994) for
details.

8. MADAMA BUTTERFLY REDUX . 181

binding theory without the structures on which ¢-command is defined. Moreover,
by dividing up the work in this way, we appear to gain in overall speed.’

The overall conception is based on the Lasnik and Uriagereka (1988) model
of free and optional application of all principles (e.g., movement and indexing).
We can picture the parser as a generate-and-test device that, searching through
the space of all possible quasi-S-structures, produces a stream of candidate
S-structures, with (underspecified) empty categories in place, and then funnels
these through a cascade of 24 additional principle modules as each candidate
emerges.® As soon as one candidate fails or makes it all the way through the
gauntlet, the system goes back and retrieves another candidate S-structure. What
emerges out the back end of this cascade is zero or more LFs (as defined in P
& P theory, e.g., with operator-bound variables, coindexed NPs, quantifiers in
operator position, etc.).

Although the actual process of running the S-structure parser is itself straight-
forward, in part because the grammar is small enough to be comparable or smaller
than those used for programming languages, what is true is that the S-structure
grammar cannot miss any candidate examples; this is its contractual obligation.
Of course, the fewer candidates it generates, the better. In a later section we
describe in detail how this may be done by taking X-bar schemas and system-
atically adding to them rules that generate gaps and adjoined phrases.

Similarly, the actual declarative statements that implement principles, for
example structural case assignment, are completely straightforward. Let us ex-
amine in some detail this example, just to dispel any mystery that might remain.

°If we generate all possible valid X-bar structures in order to check well-formedness at d-structure
first, we will waste much time because many of these will be plainly illicit given a particular input
sentence (e.g., the complement position cannot be filled by an NP in John thought, nor can an empty
category be subsumed by an NP). Clearly, constraining information on structure must be brought to
bear as soon as possible. Computationally, the picture is more complex. The current parser steers a
middle course. It is of course possible to interleave structure building and filtering, and there are a
number of ways of doing so that we and others have implemented. Briefly, interleaving applies
constraints simultaneously rather than sequentially. For instance, in the current system, one can select
to interleave any or all principles, but it generally proves most efficient that all s-structures built
must also obey the possible constraints of agreement between Subject and Inflection (via coindexing),
the licensing of syntactic adjuncts (they all must be one-place predicates, including examples such
as the sad person, the person who | saw), and S-bar deletion. Then all the quasi-s-structures that are
generated are guaranteed to obey not only X-bar constraints plus movement, but also these additional
three constraints. In many other situations, however, interleaving becomes computationally too
expensive given the current design, because the interleaved principle involves too much (wasted) -
computation over s-structure trees that will eventually have to be thrown away. The exact cost depends
in a complex way on the nondeterminancy of the particular s-structure space to be explored, the
principle involved, and so on. Thus, although some (Crocker, 1992; Johnson, 1989) have advocated
full interleaving as always more efficient, the matter is actually much more delicate. See Fong (1991)
and Fong and Berwick (1991) for additional discussion.

$This approach is to be distinguished from traditional analysis by synthesis, in that we can have
a “‘smart” generator and tester that need not wait for an entire sentence to be built up before dismissing
it.

182 BERWICK AND FONG

First, we must state that structural case assignment (sCaseAssign) has been
satisfied. This holds whenever, in all tree configurations CF, if CF satisfies the
properties of structural Case configuration (sCaseConfig), namely, a relation
between CF, the assigner, the case to be assigned, and an NP, then assignment
of case (assignCase) also holds between the assigner, case, and the NP:

:- scaseassign
in_all_configurations CF where sCaseConfig(CF,Assigner,Case,NP)
then assignCase(Assigner,Case,NP).

An Example: A Parasitic Gap Sentence

Let us see how this works in more detail via a concrete example, the English
parasitic gap sentence (example 17 of chapter 3 in Lasnik & Uriagereka, 1988),
Which report did you file without reading, to which the parser (and Lasnik &
Uriagereka) assigns a single (correct) LF. Following Lasnik and Uriagereka, for
this sentence the parser builds an LF with a controlled PRO indexed to you as
the subject of reading, although a pure variable (marked ~A(naphoric), —P(ro-
nominal) via the functional determination of empty categories, as adopted here)
fills the position after reading; a Wh trace is the object of file, coindexed to the
parasitic empty category and to which report. Note also that Head movement
has taken place: do is raised to Infl, so as to receive tense, and then the V-I
complex raised and adjoined to C(comp), yielding Subject-Aux inversion. All
this detail is captured by the 29 principles shown in Fig. 8.1, shown along the
right-hand side of the figure, along with the resulting LF tree output. It seems
quite remarkable that among the many thousands of possible principle interac-
tions, exactly one—the right analysis—survives, notably without any special
stipulation at all.

Expanding on this overview, observe that a single S-structure is recovered by
the special-purpose LR machine in Stage I, with generic empty categories already
placed in the positions of the object of file, the subject of reading, and the object
of reading, and with Head movement and inversion computed (but sans indices
for NPs, the identity of the empty categories, etc.). Free (optional) movement
blows this up to 49 candidates, which are whittled down to 5; free indexing
expands these back to 36, and then the 8-criterion, control, and Condition B cut
these back to just a single final LF.

(1) Which report did you file without reading?

(2) Stage I (s-structure with underdetermined empty categories):
lc2 [wp [per which]ly, report]] o, [[C] [I(Agr) [v did]]] [, [we youl [,
[i trace-I [vp [vp [y trace-do [vp [y file [wp NP-ectA £ P11] [ip [without](;,
(xp NP-ectA + P];, [; trace-I [vp [V I reading]][yp NP-ecA + PN

oM 1B WasAs a[ny,, a1ud Y1 A|9A11994)3 ‘pasn
$401222u38 pue s191|1 31d1ound ay1 s1s| apis puey-1ySus Y, *Suippas noynm apf nod pip 1odas yoym

*20uuds 31 Surssaoosd ‘uonerado renide ui sasied 4 3 4 9y Jo joysdeus saindwod v 1'g Old [+
)
ipeyjjdde siem suopydo 8an maN
Cu gl
JuBWBAOW 41 «
Bupjup sane|dx3 | 52
uopexeput eeuy | 82 punoj esied suQ
UojBU W8} 8Q [BUOIDUNY W Uc_ﬁmw._
hoayy edey | & ~
8seD [RANDNAS UBISSY | £ Hm“_> _..w:

Juswub|ssy ased jualeyul

sejoy—ejayy ub|ssy

84NdNAS-S 85/Rg

Si0jeA3UdD

Juswasnbay dwod ym

SPUN(py ddeIUAS BsuBd)

Sjuawnbuy [esnejd asuedy]

SWI0JOId punog BzA{eueay 44

Bujdods Jepuend i3

58]qe|JRA/I0)RIEO BSUBD]Y iI4

4138 403

jonuo)

d23

J uopjjpuol

8 uopjpuo)d

Y uopipuod

P3fqns xepujod

L2 [LldN
uof}puo) ese] adesy <
18314 8sed 22
uopsjag Jeq-s »
Xejuds uf Juaweaow-ym W A_.v 47
fuese[gng C £Buipeai Jnoyum ey nok pip podes yoiym :Buisiey

uof3|puo) B8yl sunpPnRs-qg

UoLIBYID BYBY L

DU T TP A AR RO W@ v AR e e v
RS eS8 {t Lnna -

N
[L]d-v-dN [s]A
//\
da [zl 3y
~_ |
i1 [elodd wouyum [Lld-v-1dN [¥]A
~ | N
2 d da [ehn
/\
dd da pip
— " _
da [ehuov)i nok [g]a [2luDv)i
[ZddN [2luow)l 2 podas yomm

Lu #p
/\\ ~_"

(a suopdo) (& Koasi) (& siesreq) (2 _&w8yy) (a sbenbuer) (auny)

sa9i4

(oweg)

G0N

v
iBuipea ynowgim ajy no pip wodas Yoy

((sajdwex3)

184 BERWICK AND FONG

(3) Final LF output:

[cp [NP [pe, which] [, report]] [or [c [c 11 I(Agr) did]]] [ie [np youl, [n
[; trace I-do [y [vp [v trace-do [vp [v filell] [wp NP-t[-A-P11,11, [w [»
without] [, e PRO, [, [; trace-T [vp [y I [y reading]] [y, NP-A — PI1111111]

Between Stage I's S-structure output in (2) and the single, final LF output in
(3), there is much work done in Stage II. The reader can follow along by noting
the numbers at the top and bottom of each principle box in Fig. 8.1; numbers
on top denote number of structures input to a principle module, and numbers on
bottom are those that make it through (either generated or filtered).

Briefly, the cascade of the remaining 24 principles runs like this:? full inter-
pretation (FI) of syntactic adjuncts at s-structure and S-bar deletion don’t weed
out any structures.

Next, Move-a applies freely, compositionally computing all possible chains
and assigning indices, in this example yielding 49 candidates. The actual algo-
rithm is sophisticated, but the central concept is not. The mechanism used here
is essentially to build all possible chains by computing the set cross-product of
possible links between existing empty categories and partial chains as the parser
walks a tree structure, extending partial chains or not as the parser compositionally
traverses the tree structure it has already built, starting with some selected empty
category, and keeping track of partial chains built so far as well as remaining
free empty NP candidates or a final nontrace NP head for the chain.

This nondeterminism reflects the complete optionality of the Lasnik and
Uriagereka system. All movement is optional. Hence, for each empty category, the
parser can either do nothing, cause it to participate in an already existing partial
chain, make it a 1-element trivial chain, or start a new chain, all nondeterministi-
cally. Naturally, this process must meet some constraints; for example, no chain
can cross more than one bounding node, which would violate subjacency. In
~ addition, an overt NP optionally heads a chain; an element cannot participate in
more than one chain; and all chains must be complete, that is, headed by a nontrace
element (hence, an empty Operator can head a chain, for relative clauses).?

As a simple example, consider the generic empty NP after reading. The parser
may freely decide to have this empty NP start a chain, be somewhere in the

"The principles are ordered as shown in the figure, but not the computer snapshot. Note that the
principles may be statically or dynamically reordered, often with significant computational effects.
For optimal performance, the operative principle is to delay candidate hypothesis expansion by
generating principles like movement as long as possible, and apply filtering principles like the case
filter or Condition B as soon as possible, subject to the logical dependencies of the theory. The
connection between principle ordering and “guiding principles” such as earliness or least effort in
recent linguistic discussion has not escaped our attention. .

¥For reasons of space we must omit here how the parser makes sure it is not building redundant
chains as well as checking the i-within~/ condition of circularly referential chains. We have also
taken some liberties with the full description of the composition process.

8. MADAMA BUTTERFLY REDUX 185

middle of a chain, be a trivial 1-element chain, or decide to do nothing at all
with this empty NP. Note that some (movement) indices are now in place. Of
course, we must ensure that this Chain Formation algorithm is complete, so that
among all these possibilities we generate at least all the licit chains. One result
of chain formation is given in (4).

@ [ca2 Ine [pee which] [report]], [ci [c [c 1 [; (Agr) [y did] (i L youl, [u
[ie Lve [ve Lve [ve [v file] [NP-t[-A-P]];1] [pp [p withour] [[np NP-1{—
A-P1), [y [[ve [v I [y reading]] [NP-—A — PIIIITIIIN

Next, these chain-augmented structures are assigned structural and inherent
case, and run through the case filter (in this example, with no effect on eligible
candidates). Of these 49 different chain outputs with case now assigned, all but
5 will pass through both the trace case condition (TCC: NP traces cannot have
case; Wh traces must have case) and subjacency, with 8-Roles being assigned in
between these two constraints, and Wh-movement in syntax checked (as appro-
priate for the language).? Specifically, the fourth chain output from these two
constraints will ultimately prove to be the winning structure (though the system
cannot know that yet, of course). This has a single chain linking the object of
file to which report, and leaves the subject and object of reading as unspecified
empty categories.

Proceeding, free indexing greatly expands these 5 possibilities to 36, by
computing compositionally the number of ways of dividing » elements (the NPs)
into m distinct sets (the indices and unindexed NPs).!0 Thus, the NP empty
category in subject position may be linked to which report, or to you, or be
arbitrary, etc. The traces and empty categories are then instantiated with anaphoric
and pronominal feature values via Functional Determination, which uses local
context to determine the features +A(naphoric) +P(ronominal), again following
Lasnik and Uriagereka. Here, for the correct LF, it determines that the subject
of reading is a PRO, the trace is —A—P, and the object of reading is simply an
empty category marked —A~P, hence a pure variable.!!

Finally, control theory cuts these 36 structures down to 10 (ruling out uncon-
trolled PRO); passing through the 6-criterion, binding conditions A, B, and C, the
ECP, LF movement, and full interpretation at LF, the parser eliminates all but 1 of
the viable candidates, striking out (via Condition B for the most part) cases where

9The reader may note that in this example then it might have been fruitful to reorder Subjacency
ahead of case or theta-role assignment after TCC, saving some work as suggested earlier because
fewer candidates will have survived.

19See Fong (1989,.1991) for mathematical details of this procedure.

""This algorithm, as given in Lasnik and Uriagereka, just happens to be deterministic for English,
which does not have pro-drop, but it is nondeterministic for Japanese. Of course, our selection of
functional determination is a theoretical choice that can in fact be altered; the parser would then
simply be using a different grammatical theory.

186 BERWICK AND FONG

PRO is bound in its minimal governing category. Out of many hundreds of possible
interactions, the single right result emerges, as displayed earlier.

Having surveyed how a basic sentence parse works, we now return to examine
how some of the parser modules work in detail, focusing on the recovery of
S-structure.

Building Phrase Structure

How does this system actually get its job done? As mentioned earlier, the central
problem for a P & P model is building some scaffolding on which to hang the
predicates of the theory. The key idea in solving this structural bootstrapping
problem for the first stage of P & P parsing, which will prove crucial for our
later discussion of parameterization and Japanese parsing, is the formulation of
an intermediate covering grammar that builds an underspecified s-structure (in-
cluding underspecified empty categories), but overgenerates, constructing at least
all the legal output phrase structures.

This method is strongly reminiscent of solutions proposed in the 1960s in the
MITRE (Zwicky, Friedman, Hall, & Walker, 1965) and Petrick (1965) parsers
to solve a similar problem with Aspects-style TGs. Briefly, the notion is to build
a (small) phrase structure grammar for s-structure by writing phrase structure
rules for d-structure and then adding rules to account for adjunction and move-
ment, both at d-structure and s-structure. This results in 31 rule schemas in
English, which are further augmented by additional context tests into 74 aug-
mented context-free rules. Fig. 8.2 displays an overview of this process, as
summarized in Fong (1991). : ,

Interestingly, the Zwicky et al. approach also built an initial covering grammar
of 3040 rules. The difference, however, is that the older procedure was meant
to build the structural descriptions required for old-style transformations, which
required elaborate contexts and proper ordering for their application. What has
changed is that such rules can now be disposed of; only declarative constraints

PS Rules at s-structure=

X-rules: e.g. X — Spec, X

X = N, Spec = Det

[np [oes the] [destruction of the city]]

PS Rules at d-structure Empty category rules: e.g. NP— A
[ie [ve NP-ectA P [,p was followed John]]

Adjunction rules: e.g. VP— VP, Adv
[ve [ve was followed John] [xav whyl]

plus _
Rules to account e.g. CP — Adv,C; Adv — A
for movement lop [aav whyllz was John followed]]

FIG. 8.2. Components of the phrase structure grammar for s-structure.

8. MADAMA BUTTERFLY REDUX 187

need be applied after the initial structures are recovered. For example, as is well
known, we have no separate rules for passive, raising, and the like, but just a
single movement operation. In addition, we employ more powerful LR parsing
and compilation techniques in the first place. Both of these innovations let us
build a system with considerably broader cross-linguistic coverage.

More specifically, D-structure phrases are comprised of two parts: the instan-
tiated X—bar rules for a given language, as given by the values of the X-bar
parameters in that language; plus empty category rules and adjunction rules,
introducing empty NPs (NP-ectA t+ P was followed John) and, say, empty
elements for Adverbial adjunction ([ve was followed John][aaw why]). Let us cover
the basic X~bar schemas, and then turn to adjunction and empty category rules.
Then, having completed the description of d-structure, we consider next s-struc-
ture augmentations.

Basic X-bar Schemas. The X-bar schemas are just what one would expect.
They use unordered right-hand sides and binary branching. We assume for this
parser that subjects are in Spec of IP. Parameters are incorporated by adding
constraints on schemas that are automatically expanded. For example, the rule
that reads something like, “XP derives X1 followed by the specifiers of X1 if
the parameter specFinal holds such that XP is a maximal projection and X1
immediately projects to XP” can be written as in (5), where we leave undefined
the obvious auxiliary predicates. Note how the language particular parameter
specFinal enters in.

(5) rule XP — [Xllspecifiers(X)] ordered specFinal st max(XP), proj(X1,
XP).

A schema compiler turns this form into an actual context-free rule essentially
by instantiating the theta-grid for a lexical item, letting X range over the requisite
lexical categories plus the parameter settings, valid specifier and complement
structures for particular lexical categories and items based on thematic roles. For
instance, lexical V for V = persuade in English forces the addition of the
instantiated schema in (6).

(6) VP — NP CP

Further dummy rules are added to factor in subcategorization and other
“top-down” Head selectional properties. We return to the question of implement-
ing these sorts of constraints in the next subsection, which will prove important
in Japanese. :

Addition of Empty Categories and Adjunction at D-Structure. To this set of
basic d-structures we add any schemas that yield empty elements at d-structure
(e.g., rules such as NP — A) and schemas that yield adjoined structures. Where can

188 BERWICK AND FONG

these occur? Empty NPs at d-structure can be subjects (as in I want e.c. to like
ice-cream) or as parasitic gaps. C (Comp) and I (Inflection) can also be empty, as
is familiar, due to I-movement and the like. Turning to adjunction, adopting van
Riemsdijk and Williams’ (1986) analysis, nonmovement ad junction is required for
relative clauses and PPs (as in the guy who likes ice-cream or book on the table).
Following Lasnik and Uriagereka, Wh-adverbs such as why are adjoined to VP at
d-structure and then fronted to clause initial position (e.g., [John [ve [aav why [ve
leave]]]]). This completes the description of the d-structure covering grammar; next
we must augment this with s-structure conditions, such as movement,

Addition of Movement. In general, Move-a allows any phrase to move
anywhere. This is too underconstrained, as has been noted in the literature. In
this respect the linguistic theory is incomplete. For the system described here,
in order to maintain computational efficiency only the core examples of movement
have been implemented: Head movement, adjunct fronting, and general move-
ment of NPs.

Nonlocal Movement. The Lasnik and Uriagereka principles and parameters
theory, like many others, divides the possible types of movement into various
landing and launching sites: It considers argument (A-positions, such as subject
or object) and nonargument (A-bar) positions as the main subcases for movement.
Wh-movement is the classic example of A-to-A-bar movement: The NP moves
from an argument position (such as the object of a verb) to a Comp position, as
in What; did you eat e,. Passive and raising are the classic examples of A—to—A
movement, as in John seems to be happy. Adverbial movement is A-bar-to-A—
bar: why can front in You like ice-cream why to Why do you like ice-cream.
These possibilities are already covered—that is, nondeterministically generated—
by existing d-structure rules because all A-positions (subject and object positions)
and Specifier of Comp admit empty NPs at D-structure.

Scrambling. Let us turn next to scrambling. Although this matter is currently
an open topic in linguistic theory,'2 for concreteness we adopt the approach of
Hoji (1985). This approach uses adjunction of NPs at VP and IP. Hoji’s four
examples, augmented with traces, for the Japanese equivalent of John gave Mary
a book show this kind of adjunction. The S-structure grammar covers these simply
by adding adjunction rules like .

(7) a. VP = NP VP
b. IP — NP IP

These adjunction structures cover Hoji’s example sentences such as those in (8).

"?For example, some theorists hypothesize that there is both short and long distance scrambling.

3. MADAMA BUTTERFLY REDUX 189

(8) a. [p John-ga [y Mary-ni hon-0 ageta]]
b. [p honr-o [p John-ga [vp Mary-ni t; ageta]l]
c. [p Mary;-ni [John-ga [vp t; hon-o agetall]
d. [p John-ga [yp hon-0 [yp Mary-ni t; agetal]]

Head Movement: Inflection or [and Verb Movement. Here we basically
follow the treatment in Chomsky (1986), and assume that verbs may raise and
adjoin to an inflectional element (Infl) or I can lower to the verb; for reasons of
space we Omit details of how this is implemented.

Adjunct and Adverbial Movement. Finally, schemas must also be added to
handle adjunct movement at s-structure (e.g., the fronting of Wh-adverbs such as
why, as inwhy did J ohn move). The parser uses the position of Comp at s-structure
for adverbs. A second, Head position is used as the landing site for zero-level
categories.

This completes the outline of how the s-structure covering grammar is built.
The actual phrase structure grammar constructed for s-structure is language
dependent. For instance, the X—bar schema expansions will be different according
to the values of parameters such as [ﬁpeclnitial,ﬂeadlnitial], and the lack of
Wh-movement in syntax will bar certain movements in Japanese. Table 8.1
summarizes the system for the two grammars.

Precisely because the resulting grammar is small—one of the properties of P
& P theories is to partition constraining work among different modules—we
have only 31 covering grammar rule schemas for English and 25 for Japanese.
We should emphasize this key property of a modular system: The small grammar
size allows us to consider more powerful computational engines than are ordi-
narily deployed. In particular, we employ an algorithm that has provably optimal
early error detection—what is called in the computer science literature a canonical
LR(1) (bottom-up, 1 token of lookahead) parser. Early error detection is a must
for a system that has to dispose of bad candidate structures as quickly as possible.
In the next section we show how the system automatically compiles these rules
into the form used by the LR parser.

Modifying the LR Grammar and Parsing S-structure

Let us now turn to how the system parses with this grammar, and what compu-
tational problems arise. The current system uses an augmented canonical LR
parser. While LR(k) parsers are the the largest class of deterministic shift-reduce
(bottom-up) parsers, we need to augment the basic LR machinery to handle
ambiguity, factor in top-down information, and use arbitrary lookahead. Because
these modifications play a role in the rest of the chapter, we review the relevant
changes here.

190 BERWICK AND FONG

TABLE 8.1
X-bar-Prototype Empty Category Adjunction
Language Rules Rules Rules Others
English 12 5 8 6
Japanese 12 4 7 2

One problem with left-to-right, bottom-up parsers is that they do not make
efficient use of top-down constraints or information “on the right” that could
eliminate dead-end computations. This, after all, is what the head-first/head-final
problem is all about. What can be done about this here? (Later we shall see how
well these techniques work empirically in English and Japanese.!?)

Consider first the question of verb subcategorization and selection. Given the
various expansions of VP, it would be inefficient to hypothesize all possibilities
for every verb, because it might posit empty categories fruitlessly. The resulting
machine would do extra work, inventing empty categories to try to match
possibilities suchas V> V,NP; V' - V; V' = V, NP, CP, etc. To avoid this,
the system adds an extra condition to the X-bar instantiations, based on theta
grids available from the lexicon. For example, the system adds to the rule V=
V for V = sleep, the condition that no objects can follow.

Similarly, consider an example such as John visited Mary. When the parser
was first designed, it was found that the system attempted to build relative clauses
with John as the head, and then added either nothing (as in the guy[CP)), or
visited (as in the guy [who] visited), or visited Mary (as in the guy [who] visited
Mary). These partial analyses will all fail because there would be either an empty
CP or no V in the matrix CP, but they cause much wasted effort.

In short, some way was needed so that the parser could “lift” constraints on
the right up the tree being constructed to be tested immediately, rather than

B

13We first should review a common misconception about LR parsers: that they somehow have
difficulty with left-branching as opposed to right-branching phrase structures. This has even been
advanced as an argument for parameterizing parsing algorithms in different ways for left-branching
and right-branching languages, with top-down parsing being more appropriate for right-branching,
etc. Although this distinction may be true of pure bottom-up parsers, for LR machines it is, strictly
speaking, incorrect: The class of languages parsable by LR grammars properly subsumes that of the
deterministic top-down (LL) parsers. Further, the way that the LR parser is built does incorporate
information about what is at the end of a phrase structure rule (c.g., the LR machine will contain a
state VP — oNP, that is distinct from the state VP — oNP,NP,, etc.). Note that these states are
predictive: One branch claims that an NP will follow; the other, that two will. The distinct states are
built into a finite control table. In brief, LR machines do not have more difficulty with either
right-branching or left-branching phrase structures. Of course, it may be that the stack depth is
different in the parser using one grammar than another, and that other, finer complexity distinctions
emerge, as we shall see. However, it is easy to construct simple grammars demonstrating that
left-branching and right-branching languages are equally easily parsed by LR, or even simple LR
(SLR) machines. We have not investigated this in full detail, but the LR machines for both English
and Japanese must both, at times, stack 10 to 20 items, even though Japanese appears to be somewhat
worse in this regard.

8. MADAMA BUTTERFLY REDUX ' 191

waiting until these right-hand elements were actually traversed in the input.
Again, note that this is precisely the matter of how to handle the left-to-right
character of a language, a problem that arises in Japanese.

The current implementation solves this problem by using a standard trick from
programming language compilers to add extra conditions on rules. The system
introduces a rule with an added pseudo-nonterminal condition (not a real phrase
name), here, checkInput.

(9) V' = V takesCPObject(top-of-stack(SS)) NP
(10) CP — checklnput(Input) Spec C’

In fact, what we are really doing is “flipping” the phrase structure around so that
the information will now be at the lefthand edge, rather than at the right. Thus,
this is a pseudogrammatical transformation (which does not really alter the gram-
mar). The new predicate will do the required work (check if the top of the
s-structure stack takes a CP Object and if the input contains the appropriate
elements anywhere to the left or right). It in effect acknowledges the left-to-right
bias in the order of tokens in the input stream.

Some care is needed in implementing this. Attaching the condition directly
to a bottom-up parser will not work, because we want to check the CP or VP
before we have done any work on the rest of the right-hand side of the rule.
Here, too, we use a standard programming language technique of inserting a
dummy production that does not build any input but has the side effect of testing
for the condition in a top-down way (we do not go into the necessary imple-
mentation details about the stack machine to get this to work).

(11) a. CP — Dummy Spec C’
b. Dummy — A if checkinput(Input)

When the dummy node is completely built (immediately, without consuming
any input, because it builds nothing), it will also invoke the action clause
checkInput(Input), testing whatever we want. In this case, the action will be to
scan in the input to the right for a verb. Note that the dummy node is at the
left-hand edge of the rule. This will have the desired effect even in a head-final
language, for even if the head is last, the information requested has now been
passed to the front of the expansion. Other restrictions on the right can be imposed
in a similar way. Any movement to the right will require some kind of licensing
of this kind (e.g., in Verb Inflection adjunction structures). The rule that introduces
an empty I, leaving a trace, must look ahead in the input for licensing. In a
head-final language like Japanese, this must happen when a verb raises to Infl.
The necessity of this approach in Japanese for other constructions will become
apparent in our experiments in a later section.

192 BERWICK AND FONG

PARSING JAPANESE: LASNIK AND SAITO

We begin with a very simple parameterization of Japanese that will nonetheless
be able to cover the Lasnik and Saito Wh-questions, scrambling, and so forth.!4
We consider first the Wh-movement sentences found in Lasnik and Saito
(1984). These sentences are listed in Fig. 8.3 and display many familiar of the
typological Japanese~English differences. Let us review some of these:

* SOV Language. As is familiar, Japanese is often classified as a verb final
or SOV (Subject-Object—Verb) language. Heads such as verbs and adjectives
are preceded by their objects and modifiers. However, subjects do normally
appear before verbs and objects, as in English. This distinction can be encoded
by two binary parameters that specify head/complement and specifier/head order.
The X-bar system compiles out schemas with C, I, N, V, etc. last rather than
first. We also assume, without further discussion, the existence of a VP node.

* Scrambling. Japanese phrase order is more or less free, apart from the Verb
final constraint. Direct and indirect objects may be interchanged, and appear
before the subject in an initial position (which is evidently not a process of
topicalization). We saw earlier the examples of John gave Mary a book from
Hoji (1985). Movement can account for such examples. Suppose the canonical
order is subject followed by indirect object followed by direct object. The direct
object, hon-o in this case, is free to move (by VP-adjunction) to a position in
front of the indirect object, Mary-ni, as in the fourth example in (8), or to a
sentence initial position (by S-adjunction), as in the second example. Similarly,
the indirect object may move to a sentence initial position as in the third example.
We take the elements ga, o, ni, etc. to be essentially case-marking, clitic-like
particles that do not project to phrases. (We shall see that in more complex
examples, the scrambled element can itself be further moved at LF.) In addition,
we alter structural case assignment slightly to transmit case from an A to an
A-bar position, since a scrambled NP will be adjoined to VP, and would otherwise
be unable to receive case. (This is a temporary move that we have used pending
a better account.)

® Empty subjects. As is also familiar, Subjects and other NPs can be omitted
in a super pro-drop language like Japanese. (In general the conditions that de-
termine which elements can or cannot be omitted are largely dependent on dis-
course considerations, which are not considered here. However, as pointed out
earlier, the system can be modified to take context into account in a general way,
if a theory of context becomes available.) As an example, consider (12b), taken
from Makino and Tsutsui (1986).

'*We scramble only from direct object positions here, even thou gh it is straightforward to scramble
from indirect object positions. Informally, we have noted that scrambling from the 10 position greatly
increases computation time. A tighter set of constraints on scrambling seems to be called for.

j
{
|
H
i
!

8. MADAMA BUTTERFLY REDUX 193

(2) Watashi-wa Taro-ga nani-o katta ka shitte iru Basic wh-questions
(I know what John bought)

(6) Kimi-wa dare-ni Taro-ga naze kubi-ni natta tte itta no Good in Japanese
(To whom did you say that John was fired why) but not in English

(32) *Meari-wa Taro-ga nani-o katta ka do ka shiranai Semantic parallelism:
(Mary does not know whether or not John bought what) non-absorption of ka do ka

(37a) Taro-wa naze kubi-ni natta no

(Why was John fired)

(37b) Biru-wa Taro-ga naze kubi-ni natta tte itta no Comp-to-Comp
(Why did Bill say that John was fired) movement at LF
(392) Taro-ga nani-o te-ni ireta koto-o sonnani okotteru no Complement-noncomplement

(What are you so angry about the fact that Taro obtained) asymmetries
(39b) *Taro-ga naze sore-o te-ni ireta koto-o sonnani okotteru no
(Why are you so angry about the fact that Taro obtained it)
(41a) Hanoko-ga Taro-ga nani-o te-ni ireta tte itta koto-o sonnani okotteru no
(What are you so angry about the fact that Hanoko said that Taro obtained)
(41b) *Hanoko-ga Taro-ga naze sore-o te-ni ireta tte itta koto-o sonnani okotteru no
(Why are you so angry about the fact that Hanoko said that Taro obtained it)

(60) Kimi-wa nani-o doko-de katta no Multiple-whs in Comp
(Where did you buy what)
(63) Kimi-wa nani-o sagashiteru no

(Why are you looking for what)

FIG. 8.3, Wh-movement examples in Japanese from Lasnik and Saito (1984).

(12) a. Taro-wa sono mise-de nani-o kaimashita ka
‘What did Taro buy at the store?’

b. Pen-o kaimashita.
‘He bought a pen.’

In the standard theory, the omitted subject is actually represented in the syntax by
an empty pronoun, pro.!> Again following conventional practice, we represent the
binary option that determines whether pro is available or not as the pro-drop
parameter.

e No visible Wh-movement. Following Lasnik and Saito and other recent
work, we assume that Japanese LF looks like English LF: There is no Wh-move- -
ment in the syntax, but there is movement at LF. Thus, the option of whether
to allow Wh-movement between d- and s-structure is a parameter. As we review
later, it is this distinction that enables Lasnik and Saito to explain a variety of
facts, including why the counterpart of a sentence such as (6) in Fig. 8.3 (which
is well formed in Japanese) is ill formed in English.

o Wh-Movement at LF. We follow standard principle-and-parameter theory
arguments in moving a W in situ at s-structure to a presentential scopal position
at LF. In a sentence such as watashi-wa Taro-ga nani-o katta ka shitte iru ‘1
know what John bought’, as shown in the computer output in Fig. 8.4, the
question word nani is moved at LF to a position that has scope over the embedded

We follow Takezawa (1987) in making this empty category a small pro. This option is evidently
not available in English.

" UBNoq uyor 1BYM mouy [, nat auniys vy

DHDY 0-1uvu 03-0.19], DM-1svIDM UANUIS Isaueder g Jo asred ays joysdeus sandwo) g ‘DL

ipejidde s1em suopydo asn man

— 10

JuawesAOW 1
Bupjun sanajdx3

uopnExapu; 884

uopRUWIB}BQ |BUOIDUNS
Aosyy edeuy

aseD [e1ndnas ubjssy

JUBWUBISSY BSRY JUalayul

sajoy-e1ay| ubissy

2INMPNAS-S 8sIey

sa0)esauan

Wwawalnbey dwos ym

spUnfpy >povIuAS asuad)y

sjuawnbay |esne|d asuadyy

SwI0j01d punog azA[euesy |4

bujdods ssyypuend 14

s8]qejJeA/lojelado asusd 14

4138 ¢33

1onu0)

dd3

3 uopjpuod

8 uopipuoy

¥ uopipuo)

Pafgns xapujod

Uop{puo) 8seY BdeU)

13)j14 8se)

uopyejaq f2q-5

Kejuhs Ul JusWaNoW-ym

Auadefgns

uopIpUOD BIBY L BININAS-]

uoyayID BIaY L

s1ayg

- oweq)
®

e A A A A At

A A A A A A A A HA S WA A A 0 T MM M o e

G

punoj esied suQ
ey
deyg
_
?@0&. bha han
[eluow) da S

4] [elan
_ //\. ey
b]
auns /(\\\\\w._ @
(A
- > AN L
Aw_s A P
i 0 SRALIER IS
[blA [1luowh [aha da

~_ T~ MsElem
[{uowh da

1} (3% Y]

(1) 1
MUl alys ey epey o-jueu eb-ooie) em-lysejey, Buisiey

(a suondo) (2 &o3siH) (a siosreq) (& K03yl) (2 sbenbuer) (a uny)

0GT90

ni1 aPIys ey eyey o-fueu eb-oole] em-iysejep

Gerduee)

<
(o))
-~—

AL EREI RIS YRR T

8.« MADAMA BUTTERFLY REDUX 195

sentence (as indicated by the bracketing) leaving behind an (LF) trace LF-t to
be interpreted as a variable in its original position. Because we want our Japanese
and English grammars to be as uniform as possible and follow a full CP/IP
system, we deviate from Lasnik and Saito’s approach that puts the W element
in a single (head of) Comp position. Instead we move it to a Spec of CP position.
Additional constituents moved at LF are adjoined to this Spec position. In this
example the question particle ka fills the Head of the embedded CP (=C2), and
nani fills Spec of this CP the left, immediately after the C2 bracket.

To be sure, this is not in any way meant to be a complete characterization of the
differences between these two languages. We defer for now all the intriguing
questions of case marking, passives, causatives, and so forth. Rather, it is designed
to be sufficient to demonstrate what we set out to show: to cover the examples
shown in Fig. 8.3 with just a handful of parameter switches, literally as shown in
Fig. 8.5, and provide the groundwork for the computational experiments in the next
section.!®

Even so, it is intriguing that the same set of principles for English recombine
in different ways to handle the Japanese examples. The important point here
again is that the system gets (by design) precisely the parses required in Lasnik
and Saito, and blocks ungrammatical sentences by the same means as well.

PARSING JAPANESE: THE COMPUTATIONAL
EFFECTS OF SCRAMBLING, PRO-DROP,
AND PHRASE STRUCTURE

With the sketch of English-Japanese parameterization behind us, in this section
we turn to the investigation of the compurational differences between the two
languages that we have explored: How do English and Japanese differ with
respect to their difficulty for parsing? As a simple source of examples, we took
sentences from Hosokawa (1990). For the most part, with the exception of our
discussion of center-embedded/left-branching constructions in the next section,
we follow the simple examples as they appeared in that paper, describing various
problems that arose.

In the discussion that follows, we shall need to draw on comparisons between
the complexity of different parses. While this is a delicate matter, there are two
obvious metrics to use in comparing this parser’s complexity. The first is the
total number of principle operations used to analyze a sentence—the number of
s-structures, chain formations, indexings, various constraint applications, etc. We
can treat these individually and as a whole to give an account of the entire “search
space” the parser moves through to discover analyses. However, this is often not
a good measure of the total time spent in analysis, because some operations take

'Some of these parametric variations lead to implicational universals. For example, Lasnik and
Saito (1987) states that if a language has syntactic Wh-movement then it obeys the Wh-Comp
requirement at s-structure. See discussion later in text.

196 BERWICK AND FONG,

English and Japanese parameter settings
English Japanese
Spec order speclnitial. speclnitial.
specFinal - \+ speclnitial. | specFinal :- \+ speclnitial.
*Head order headInitial. headFinal.
headFinal :- \+ headInitial. | headInitial :- \+ headFinal.
Agreement agr(weak). agr(weak).
Bounding boundingNode(i2). boundingNode(i2).
boundingNode(np). boundingNode(np).
. *Case Adjacency | caseAdjacency. :- no caseAdjacency.
*Wh in Syntax whinSyntax. --no whinSyntax.
*Pro-Drop :- no proDrop. proDrop.

FIG. 8.5. The differences between English and Japanese are captured by just a
few parameter switches, shown here as actually written in the Prolog program.
Distinct parameter settings for the two languages are marked by the four asterisks.

more time than others. The second measure we use is more particular and precisely
tailored to the specific backtracking-LR design we have built to recover structural
descriptions: We can count the total number of LR finite-state control steps taken
in recovering the s-structure(s) for a given sentence. We shall more often rely
on this measure.

A third, obvious, and perhaps even more accurate alternative is to time the
overall parse and individual principle modules. While this is a legitimate ap-
proach, we have decided to avoid machine-dependent timing for the moment. In
addition, we have found informally that such timing, where it is stable, is highly
correlated with our other measures.

Turning now to the sentences themselves, to demonstrate how we can extend
the P & P system beyond the Lasnik and Saito examples, we illustrate some of
the (sometimes slightly modified) sentences covered in Hosokawa and their
parses. (Again we stress that this is not meant in any sense to be complete, but
rather a demonstration of how to build a P & P system that covers multiple
languages. Enough questions arise even with this small additional sample to raise
many interesting issues.) Fig. 8.6 lists the sentences discussed in this section. In
the next section we turn to a more general computational optimization analysis.

The first two example sentences illustrate marking by the particle no. (For a
computer snapshot of the parser analyzing Japanese, see Fig. 8.7 in the next
section.) In the first example, no marks linguistics with genitive case (effectively
nominalizing it, hence the parser displays it as an NP), while student is marked
nominative, and so on; branching is to the right, and I lowers to V.7

""In fact, two LFs are output because free indexing operates purely syntactically. The second LF,
with distinct indices on all NPs is the correct one. However, the first LF shown, with the two NPs,
linguistics and cheese, both assigned the same index, 2, is not blocked, because linguistics is A-free
in its minimal nontrivial chain. Thus, without any syntactic principles to block it, the indices i and
Jj here may be equal, which is of course anomalous. Similarly, in the English the rat the cat killed
ate cheese, cat and cheese yield two parses, one where cat and cheese receive the same index. As
we discuss later, this “problem” is one repaired by a (tacit) assumption of the Lasnik and Saito

8. MADAMA BUTTERFLY REDUX 197

(1b)’ Gengogaku-no gakusei-ga tiizu-o tabeta
linguistics-Gen student-Nom cheese-Acc eat-Past
‘A student of linguistics ate cheese’

(2b)’ Nagai kami-no gakusei-ga tiizu-o tabeta
long hair-Gen student-Nom cheese-acc eat-Past
‘A long haired student ate cheese’

(3b) Taro-ga hon-o katta
Taro-Nom book-Acc buy-Past
‘John bought a book’
(4b) Taro-ga Hanoko-ni hon-o ageta
Taro-Nom Hanoko-Dat book-Acc give-Past
“Taro bought Hanoko a book’
(sb) Taro-ga hon-o table-no ue-ni oita
Taro-Nom book-Acc table-Gen top-Dat put-Past
“Taro put the book on top of the table’
(6b) Taro-wa gakkoo-ni itta
Taro-Top school-Dat go-Past
“Taro went to school’ ’
(15b) Watashi-wa ' Taro-ga nani-o katta ka shiranai
I-Top Taro-Nom what-Acc . bought-Ques know-not
‘I don’t know what John bought’
(17b) Taro-wa Chomsky-no Barriers-o yomimashita ka
Taro-Top Chomsky-Gen Barriers-Acc read-Past-Ques
‘Did Taro read Chomsky's Barriers’
(18b) Hanoko-wa Biru-ga Chomsky-no Barriers-o yonda ka-do-ka shiranai
Hanoko-Top Bill-Nom Chomsky-Gen Barriers-Acc read-Ques know-not

‘Mary does not know whether or not Bill read Chomsky’s Barriers’

FIG. 8.6. A list of the sentences from Hosokawa (1990). Numbering corresponds
to the original article, with primes denoting slight modifications or extensions of
fragments to full sentences; we drop the primes in subsequent discussion.

As for the second sentence, long haired student ate cheese, note that no marks
the entire nominal clause for genitive case, as desired. We also get two parses
as before. '8

The third and fourth sentences pose no apparent difficulties, each producing
a single (correct) analysis. (The system could also parse a sentence with the
direct object position scrambled, given our limited implementation.)

account of relative clauses as open sentences with a bound variable corresponding to the head of the
clause (that is, A(x)P(x atethecheese).the rat). Ordinary locality considerations of such logical forms
would rule out the odd bindings, and we implement this approach later.

"A direct counterpart of the English possibility “student with long hair” (“long hair with student™)
evidently doesn’t arise in Japanese (Miyagawa, personal communication), We may suppose that this
latter possibility is excluded because no is not acting as a true postposition, that is, roughly as it is
in English, but rather is clitic-like in nature, like the other particles. The reason that no must appear
on each element in the nominal is left as a mystery, of course.

uaioL som a1v pajry sdaay uyor 1> ay s

241 253343 24 ‘3ouanuas ysiSug PopPPaqUIR-131u3 Adin ayy jo asmed ay Joloysdeus v <;g "Dy

‘ JuswaAol 47 _

_’ bupyu)] eanedx3
uojyexspu| sesy

uopeUjULIB}BQ fBUOIDUN Y
Asosyy edesy

8SED [BINPNYS Ub|SSY
Juswubyssy esed yusssyuj
[ssioumouL vepssy |
INPNQS-S asrey
sJ0jessuan

jusweinbey dwod ym
sRUNfpy dRIUAS asusdpy

F———— 2 " V|
SuewWn6ay [esney) esuadyy

P——— Y R
Swojoid punog ezAjeuray 14

| Buidoss seypuent 44 |
Sa|qejres/s01e10do 8sued) 114
4138 403

loQuo)
dJ3

J uopyjpuo)
8 uonjpuo)
¥ uoptpuod
Pefgns xapujod

UoN|puo) ased edel)

19|14 85R)

uonajsq seq-s

XeJuAs u| Juswasow-ym
Ausdefgng

UoIpuo) B8y} 8MNPNRs-q
Hop8y1I3 ejey

~oweq

/

£
E
5

G-

d

‘ﬁ ITITIT 'E CLET Ty

:‘mvﬁﬁanu«ﬁﬁnnuuﬂNNNnnn«Nﬂdn««&aawu«

eomgy

-

ipeyjdde aiom suopydo san meN

——(T T3
- EldY1EaN EA
/%\Eéos_ uyof
PaIny //:\ E_n_z
L> EE@«:/N_\U '8y
[2ld-y-1dN /EA /\an F~= Lu
/aﬂ\ﬂnﬁmcs_ /\ _W%
T~ /\
Jm F/.\\\\Emz
[sln [oLkuow) 2] 1 Ay
Em.«r&z/ﬂﬂ /u\ [2ldo F‘__ L_o
~—" ~_
[2Myov) 2 Emz

d
>/\ /\
L [2lan
././\\\\.\.\

uayoi sem 2! 2 asaAYd ay

aw uba It __ EE@«.:.//_ Jd ~= ~~n
A LA 19 [do 1w 9
~ ~_ ~_ N
da [tigow) 2 BOEN]

/\ /\
u [LldN
— M

2 2

<

bE)

‘uogiou sem age Poiny sdeey uyor je1 iy 3eo a1 eseeyd ayy

(s8jdwex3

198

8. MADAMA BUTTERFLY REDUX 199

The fifth sentence, (5b), illustrates both scrambling (with the NP trace of hon
“book’, moved from its canonical direct object position) and an extra parse arising
from the “accidental” coindexing of hon and table.!®

Sentences (6b) and (15b) pose no new problems, but example sentences (17b)
and (18b), both yes-no questions, do. When the system initially tried to parse
these sentences, it failed on all of them. The Wh-Comp Requirement blocked
the correct parses. Sentence (17b) is typical. The problem is that there is a ka at
the end of the sentence, a Q(uestion) marker, but no Wh element to pull out to
Spec of the matrix CP. Thus the Wh-Comp requirement, which requires both
spec and head to be marked, is not satisfied. We must artificially turn off the
Wh-Comp requirement in such examples. The same tactic was used for other
yes—no questions, which will all otherwise fail because there is no +Wh element
to move to Spec of CP, again violating the Wh-Comp requirement. A fix is
plainly in order here. In English, with no explicit Q marker, we simply marked
the Comp +Wh if the Spec was also, because a Wh-phrase will be there in a
matrix wh-question at s-structure. In Japanese, we need something like an abstract
Q operator with a Wh feature to satisfy the Wh-Comp requirement, but so far
this has not been implemented.

PROCESSING COMPLEXITY: A CASE STUDY

Given this initial set of analyses, let us now examine the complexity of Japanese
sentence processing as compared to English. To do this, we initially examined
sentences that we thought would highlight the ease of Japanese relative to English,
namely, the “classic” English center-embedded versus the Japanese left-branching
constructions from Kuno (1973).

(13) a. The cheese the rat the cat John keeps killed ate was rotten

b. Taro-ga katte-iru neko-ga korosita nezumi-ga tabeta
John-subj keeps cat-subj killed rat-subj ate
tiizu-wa kusatte ita
cheese-topic rotten was

On the conventional Chomsky—Miller account, the English construction is
very difficult to parse, while the left-branching Japanese form is completely
understandable. Does the same hold for our parser? The answer, initially, is No.

‘Why should this be? On a modern analysis, and the one adopted here, recall that
restrictive relative clauses such as the rat the cat killed are open sentences, and so
contain an Operator-variable structure indexed to the rat; roughly as in (14).

(14) [w [we the rat]; [cp Operator, . .. the cat killed NP-t{-A—P]; 1]

Qur LF Binding Condition C requires that an R-expression be A-free in the domain of the head
of its nontrivial chain. In the example, hon is in a VP-adjoined, an A-bar position, so table is in fact
A-bar-bound, not A-bound. Thus it is A-free, as required.

200 BERWICK AND FONG

We assume that empty operators are base-generated in A—position and fronted
by Move-a (Chomsky, 1986).

To the best of our knowledge, no P & P based parser had ever attempted to
analyze sentences this complex, with a triple center-embedding. In this case, 904
possible indexings are tried before the single correct parse is discovered. _

What of Japanese? Our initial parse is shown in Fig. 8.8 (see also the statistics
in Fig. 8.9). We expected this sentence to produce a single parse, and it does.
The P & P model still worked. (Remember that we changed just a few parameters
to get this radically different structure to come out.) However, when we examined
the number of computational operations (measured by LR transitions), the result
was quite surprising: about 207,000 LR operations, compared to about 18,000
for the English version. Thus, according to this metric, the English center-em-
bedded sentence is much simpler than the Japanese—an unexpected result. (Note
that the simple Japanese sentence and one center-embedding are simpler in
Japanese than in English; the effect appears only after two embeddings.)

However, a quick glance at the computer snapshot shows that the Japanese
structures are center-embedded after all—the parser places a potentially arbitrary
string of empty Operators at the front of the sentence. This problem is essentially
that noted by Mazuka and Lust (1990), and others. The P & P parser certainly con-
firms their suspicions that there may be many more logical possibilities for analyz-
ing a Japanese sentence, as compared to its English counterpart. Perhaps, then, the
formal accounts of why this sentence should be easy to parse are incorrect; it is
formally difficult. Or perhaps it is scrambling, or pro-drop, or the Head-final char-
acter of the language that makes such sentences difficult. What is the source of the
complexity problem? In the remainder of this chapter we investigate this question.

To do so, we embarked on a series of optimization efforts that focused on
the Spec position of CP and the head-final character of the language, with the
goal of making the Japanese as easy, or easier than, the corresponding English
sentences or determining why we could not make it easier. In all, we conducted
three empirical tests: (a) using dummy nonterminals to lift information from the
verb to the VP node, to test the head-first/final hypothesis; (b) placing Spec of
CP on the left rather than the right, to test the center-embedding hypothesis; and
(c) building a “restricted” pseudo-Japanese that eliminated scrambling and free
pro-drop, but did not lift information up and to the left, leaving the Head-final
nature of the language intact. We cover the first and third computer experiments
in detail here, leaving aside discussion of the second, due to space limitations.2

[brief, if it is center-embedding that causes parsing complexity, then an obvious strategy is
to get rid of the center-embedding itself. Here, there is a grammatical move we can make. Evidently,
in Japanese, the only elements that appear in Spec of CP are put there by LF movement. Thus, these
elements can never be visible in this position on the surface. If this is so, then there is really nothing
to prevent us from placing just the Spec of CP on the right, rather than the left, at least as a test.
(Another advantage of the implementation is that this change takes exactly two lines of code.) Of
course, one can argue against this move: If we maintain complement-head order, and Subjects in
VP internal Spec position, unlike in this parser, then perhaps Spec should be on the left, uniformly.

‘ys1gug o1

patedwos se ‘47 192000 Fuis sty pjing 01 painbas suonesado 1asred jo saquinu aSrm| 2yl ‘UWnOd
puey-1y311 Y1 uo ‘st [[am se ‘siojesado Aidwo jo Suins ay Aou ‘9an Iy Jo Buy puey-1J9| Y1 MO
Suoea g, “uonsanb pappaquia-121uad ysijSug ay Jo uedigunod assueder ayy jo asred oyl ‘8’8 ‘Ol

UBWBAOW 1

Bupjur aAne|dx3

uopexepuy 84

uoljeujwIe}eq jeuoipuNy

Asoayj edesy

8se) |esnionas ubissy

1uawubissy aseDd yusaiayu)

sajoy~eIay} ubissy

eIndN.OSg-5 Bsred

si0jeIaU8D

juswalnbay dwod ym

spuUNfpy d[BIUAS Bsuad(l

sjuswnbay [esne|d esued)

swojoid punog ezdjeuesy 14

6ujdods Jayauend 14

sa|qerreA/s0iesad0 ST 14

112 dd3

10Quoe)

423

O uopjpuoly

g uoN{pucd

¥ uontpuo)

18{qns xspujod

UOl}IpuOT 858D BOBAL

Ja3f)3 esed

uons|aq seq-§

XRIUAS U] JUBWOAOW Y M

Auadefgns

uoNIpuUoD BI8Y L 81NdNRS-0

uopIBy) B3y L

0 A e i O 00«0 00 NN

AHOD O At D0 A D0 OO DN NN AN DI At Wt it A D00t

ipeljdde asam suojido sen MBN

{10
o vt I

ZA A Ileld-y-N

5@3, Isha da -

IeluovX da HY

/\\\ |
1] IeldN
.M«..._uemw /\
AKJ.:K oyau u/\w_
elgovh Ui -y B 15 ko
/\ ~7 L SN
leluov)X da (3511 z°
/\\ /\
1] [eldN
_meaey . —
»‘&./._\@ Junzeu u/\u_
m eln [ziuovh [fa-v-an P lzlo
~_ //\ | ~
[ZHuovX [zldn 4]
/\ /\
1] I2ldN

(a_suondo) (& koasin) (a ssesieq) (a Aoeyr) (a ebenbuey) g

sa3y 4

(- owasg)
®

0G0

B 8})) eSN)| BM-NZI) Bjeqe] eB~|Wnze u B)jys0.10) eS5-03su nuj o)) By uvsuoohu._.

(sedwex3)

201

202 BERWICK AND FONG
cel. The cheese was rotten. ’
ce2. The cheese the rat ate was rotten.
ced. The cheese the rat the cat killed ate was rotten.
ce4. The cheese the rat the cat John keeps killed ate was rotten.

Total number of LR state transitions
Sentence Jp, Unoptimized Jp, Optimized English

cel 57 62 745
ce2 689 563 2,431
ce3 8,627 6,041 4,979
ced 207,909 155,125 21,074

FIG. 8.9. A comparison of Japanese unoptimized and optimized total LR state
transitions to parse sentences (cel-ced), along with a comparison to the parsing
effort for their English counterparts.

Optimization 1: Head-Final Information

Our first optimization centers on the head-final phrase structure of Japanese. As
has often been noted, with heads at the end, valuable restriction information
(subcategorization, selection) may be unavailable at the time the parser has to
make a particular decision. However, for our LR machine, there is a well-known
programming language optimization, discussed in a previous section, that we
used for English. Thus, the comparison with Japanese is not entirely on level
ground as yet, because the full optimization applied to English had not yet been
applied to Japanese. Specifically, if verb information occurs on the right, we can,
offline, lift that information up to the VP node, where it can then influence the
LR state transitions that are made when examining material to the left of the
head. This is precisely the mechanism we used to determine whether to insert
an empty category or not in a Head-first language. For instance, in Japanese
relative clauses, this is of importance because the parser may get valuable infor-
mation from the verb to determine whether a preceding NP belongs to that relative
clause or not. We emphasize here that this optimization is, in the limit, psycho-
logically implausible, because it admits the possibility of unbounded lookahead.
On the other hand, this method of transforming the grammar when doing parsing
is roughly that used by other “noncanonical” parsing schemes (like that of Mar-
cus): It simply says we need not build every subtree completely in a strict

On the other hand, the existence of a stack of verb-final particles in Japanese gives tenuous evidence
for a Spec-right analysis. We do not attempt to resolve this linguistic question here. Given this
change, the resulting structures will have their Operators on the right, rather than the left, and will
not be center-embedded. In addition, suppose the parser does not take advantage of right-hand
information, thus eliminating this as a possible source of speedup. What happens to the resulting
parsing complexity? Parsing time is significantly improved over the unoptimized version, by about
10 to 15 percent.

8. MADAMA BUTTERFLY REDUX 203

left-to-right order. That much seems possible, even plausible, on a clause-by-
clause basis.

As illustrated earlier, we implement this modification by introducing dummy
nonterminal nodes and associated special checking procedures for them, in effect
reversing the phrase structure locally. This compilation is done automatically—
not by hand. For example, for each V subcategory, the LR machine will contain
in effect a new LR state: The system will add a command to look as far into the
input as needed to determine whether to branch to this new State or another V
subcategory state. Thus, the action and transition tables of the resulting machine,
which we call “optimized,” will be far larger than its “unoptimized” counterpart,

The advantages gained by this optimization are significant. Fig. 8.10 displays
the basic results (standard error bars are displayed). It compares the total number
of LR state transitions to parse the embedding example sentences (cel)~(ced),
as an unoptimized over optimized ratio, so that any value greater than 1 indicates
an improvement over the base, unoptimized case. As one can see from the bar
graph, although for a nonembedded sentence the optimized parser operates at
essentially the same level as the unoptimized one, the unoptimized number of
LR state transitions grows astonishingly rapidly with embedding, as we saw

Ratio JP LR transitions unopt/opt

cel ce2 ce3 ced

Sentence #

FIG. 8.10. A bar graph showing the reduction in LR states required using a
right-hand information compared to the unoptimized base case when parsing the
Japanese examples (cel-ced). Any ratio greater than | (indicated by the horizontal
line) indicates an improvement over the base case.

204 BERWICK AND FONG

earlier.2! Thus, for doubly or triply center-embedded sentences, the parser im-
proves by 40% or more. We would expect this improvement to be maintained
for more complex sentences, since the number of possible Operator-variable and
compositional arrangements increases roughly exponentially (Fong, 1989).

The Japanese right-hand information optimized version is superior to the
unoptimized, base-case Japanese version, but it is still not as efficient as parsing
English, because over 150,000 (155,125) transitions are needed to handle the
most complex center-embedded sentence in Japanese, as opposed to 21,074 for
English. Thus, it appears as if a basic left-right efficiency asymmetry is so far
confirmed, because using information on the right in this powerful way reduces
complexity by so much. The same basic trend also holds, though not as strongly,
when we look at the other Japanese sentences (see Fig. 8.12). The effect is more
pronounced with more complex sentences.

Optimization 3: The Effects of Scrambling and pro-drop

Part of the complexity of Japanese is the result of free scrambling and pro-drop.
To explore this, we ran a series of computer experiments on a quasi-Japanese
grammar, J*, which was just like Japanese except scrambling and pro-drop were
barred. The changes were again simple to make: One change was automatic, just
turning off a parameter value, and the second involved 3 lines of hand-coding
in the X-bar schemas to force the system to look for a lexical NP in direct (and
indirect) object positions. In this case, we looked at two possibilities: one with
just scrambling and pro-drop turned off, and no head-final optimization; and one
without scrambling and pro-drop and with the head-final optimization. This sec-
ond test can be regarded as near as one can get to an English-like Japanese
language, but without scrambling (because English used this optimization as
well).

The results are instructive. Eliminating just scrambling and pro-drop results
in efficiency gains that parallel those of the head-final optimization—roughly, a
factor of 1.3 to 1.5 improvement. However, by combining the two factors, we
get an interactive effect. This is the best optimization of all, in fact finally
comparable to English: The most deeply center-embedded sentence takes just
27,938 LR transitions. (Plainly then, this complexity metric does not account for
the unacceptability of English center-embedded sentences.)

Figure 8.11 displays the results. Without scrambling, and hence no movement
at all compared to English, the head-final quasi-Japanese was for the most part
parsed 5 to 8 times more efficiently than unoptimized Japanese.

How are we to interpret this last result? As before, with a short sentence,
there is little difference between optimization methods, but over a range of

2'We should point out that in all cases, about two thirds of these transitions occur before the LR
machine reaches a point in the search space where the solutions are “clustered” enough that the
remaining solutions do not take so much effort.

8. MADAMA BUTTERFLY REDUX 205

10

Ratio JP LR transitions unopt/noscramble drop opt

o

cel ce2 ce3 ce4
Sentence #
FIG. 8.11. A bar graph showing the improvement in total LR transitions when
parsing Japanese examples (cel—ce4), as a ratio compared against the base-case

parser.

sentences, and with longer sentences, the dominance of the optimization becomes
clear. Evidently, given the framework of assumptions we have made, the head-
final character of Japanese does not hurt the most; rather, it is the interaction
between the features of scrambling and pro-drop that does. We can confirm this
by looking at the LR transitions for the sentences in Fig. 8.6, across methods,
summarizing our tests (see Fig. 8.12).

OPERATIC CONCLUSION

So, we have come to the operatic conclusion: English and Japanese have met,
but are they really one and the same? Given our limited set of test sentences,
our results must be tentative. Nonetheless, we can make several points:

® One can parse Japanese by parametrically varying a grammar, much as
expected. The limits of the method are theory-bound: We can accommodate just
as much as we understand about Japanese syntax, in principle.

* A single parser suffices for distinct languages; the grammar is parameter-
ized, but not the parser. Japanese sentences appear at first much more complex

206 BERWICK AND FONG

Summary of Times Improvement
in LR states consumed, Unopt=1.0

50

40

30

20

Unoptimized/Other Parses

10

1b 2b 3b 4b 5b 6b 15b 17p 18b
Sentence

FIG. 8.12. A bar 8raph showing the improvement in total LR transitions when
parsing Japanese examples in Fig. 8.6, compared against the original base-case
unoptimized parser, across the experiments described here,

o come more from the possibilities introduced by scrambling and the omission
of NPs interacting with Head-final properties. Unoptimized, the System is too
slow. More efficiency is obtained if one can lift information from the right for
use in parsing with an LR machine, Thus, basic left-right differences between
English and Japanese do show up in the LR machine (even in the exact details

8. MADAMA BUTTERFLY REDUX 207

Like all productions, this linguistic opera is ongoing and demands a theatrical
sequel. Perhaps minimalism is desirable not only in theatrical performance, but
in grammar. We believe that notions of economy of derivation would help, not
hurt, computational effort, as has sometimes been maintained. Because Butterfly
itself is in Italian, perhaps we should add a third language—or a fourth. The Met
will have to wait a little longer for the last note.

ACKNOWLEDGMENTS

This chapter describes research done at the Artificial Intelligence Laboratory at
the Massachusetts Institute of Technology. Support for the work described in
this chapter was provided in part by NEC Research Laboratories, Inc., by NSF
Grant DCR85552543 under a Presidential Young Investigator Award to Professor
Robert C. Berwick, by a grant from the Kapor Family Foundation, and by Mit-
subishi Electrical Laboratories, Inc. We thank Howard Lasnik, Alec Marantz,
Shigeru Miyagawa, David Pesetsky, and Mamoro Saito for valuable discussions
and valiant attempts to tell us about Japanese, as well as to Reiko Mazuka, Janet
Fodor, the other participants of the Duke University conference on Japanese
Sentence Processing, and especially Amy S. Weinberg for careful lepidoptery.
We may not have heard everything they have said, but we have tried hard to
listen. '

REFERENCES

Chomsky, N. (1981). Lectures on government and binding. Dordrecht: Foris.

Chomsky, N. (1986). Barriers. Cambridge, MA: MIT Press.

Crocker, M. W. (1992). A logical model of competence and performance in the human sentence
processor. Unpublished doctoral dissertation, University of Edinburgh, Edinburgh, Scotland.
Fong, S. (1989). The computation of free-indexing. In Proceedings of the 27th Annual Meeting of
the Association for Computational Linguistics (pp. 105-110). Association for Computational

Linguistics.

Fong, S. (1991). Computational properties of principle-based grammatical theories. Unpublished
doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA.

Fong, S., & Berwick, R. C. (1991). The computational implementation of principle-based parsers,
In M. Tomita (Ed.), Current issues in parsing technologies (pp. 9-21). Dordrecht: Kluwer.

Fong, S., & Berwick, R. C. (1994). Cartesian computation. Cambridge, MA: MIT Press.

Frazier, L., & Rayner, K. (1988). Parameterizing the language processing system: Left- vs.
right-branching within and across languages. In J. Hawkins (Ed.), Explaining language universals
(pp. 247-279). Oxford: Blackwell.

Hasegawa, N. (1990). Comments on Mazuka and Lust’s paper. In L. Frazier & J. de Villiers (Eds.),
Language processing and language acquisition (pp- 207-224). Dordrecht: Kluwer.

Hosokawa, H. (1991). Syntactic differences between English and Japanese. Georgetown Journal of
Languages and Linguistics, 1 (4), 401-414.

208 BERWICK AND FONG

Hoji, H. (1985). Logical form constraints and configurational structures in Japanese. Unpublished
doctoral dissertation, University of Washington, Seattle,

Johnson, M. (1989). Use of knowledge of language. Journal of Psycholinguistic Research, 18(1),
105-128.

Kuno, S. (1973). The structure of the Japanese language. Cambridge, MA: MIT Press.

Lasnik, H.,, & Saito, M. (1984). On the nawre of proper govemment. Linguistic Inquiry, 15(2),
235-289.

Lasnik, H., & Uriagereka, J. (1988). A course in GB syniax: Lectures on binding and empty categories.
Cambridge, MA: MIT Press.

Makino, S., & Tsutsui, M. (1986). A dictionary of basic Japanese grammar. Tokyo: The Japan
Times.

Mazuka, R. (1991). Processing of empty categories in Japanese, Journal of Psycholinguistic Research,
20(3), 215-232.

Mazuka, R., & Lust, B. (1988). Why is Japanese not difficult to process? A proposal to integrate
parameter setting in Universal Grammar and parsing. In J. Blevins & J. Carter (Eds.), Proceedings
of the New England Linguistics Society, 18 (pp. 333-356). Amherst: University of Massachusetts.

Mazuka, R., & Lust, B. (1990). On parameter setting and parsing: Predications for cross-linguistic
differences in adult and child processing. In L. Frazier & J. de Villiers (Eds.), Language processing
and language acquisition (pp. 163-206). Dordrecht: Kluwer.

Petrick, S. R. (1965). A recognition procedure for transformational grammars. Unpublished doctoral
dissertation, Massachusetts Institute of Technology, Cambridge.

Stabler, E. P, Jr. (1992). The logical approach 1o syntax: Foundations, specifications and
implementations of theories of government and binding. Cambridge, MA: MIT Press.

Takezawa, T. (1987). A configurational approach to case marking in Japanese. Unpublished doctoral
dissertation, University of Washington, Seattle. ’

Zwicky, A., Friedman, J.,, Hall, B., & Walker, D. (1965). The MITRE syntactic analysis procedure
for transformational grammars. Proceedings of the 1965 Fall Joint Computer Conference 27 (pp.
317-326). Washington, DC: Spartan Books.

