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Open any textbook on Artificial Intelligence and you will
| find a chapter on language that shows how a few pattern-
matching rules enable toy-world sentences to be transformed
b into syntax-reflecting parse trees. Thus encouraged, you
might suppose that handling real-world sentences is just a
matter of a few more rules.

Alas, just a few more rules are inadequate, and many
research groups have demonstrated that many thousands
are not enough, evoking doubts about whether traditional
pattern-matching rules are really the right representation for
expressing linguistic competence.

But there is an alternative approach. Instead of an
unmanageably large, undifferentiated rule set, Berwick and
Fong work with a dozen or so explicitly parameterized mod-
ules. Although each module has only a few parameters at
most, they combine multiplicatively, explaining the rich va-
riety found in the world’s languages.

One of the many advantages of the approach is econ-
omy of implementation. You should be able to condition
a parsing program to handle your favorite language by se-
lecting the appropriate parameter settings and by supplying
the appropriate lexicon. Berwick and Fong have one set of
parameter settings that capture the conventions of English.
Other sets deal with Spanish, German, and even Warlpiri,
an exotic, much studied language, cherished by linguists for
its strangeness, spoken only by a few thousand central Aus-
tralian aborigines.
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Introduction: Principle-Based Parsing and Rule-Based
Parsing

This chapter describes a new approach to processing natural language,
principle-based parsing, that has been developed at the MIT Artificial In-
telligence Laboratory over the past five years. Principle-based parsing re-
places the traditionally large set of rules used to parse sentences on a lan-
guage by language basis with a much smaller, fixed set of parameterized,
universal principles. The principles interact deductively to replace many
rules. '

-We have used this approach to implement a unified parsing scheme
that can solve many thorny problems in natural language processing:

e Handle a wide variety of languages, including English, Spanish, Ger-
man, and even “exotic” language like the Australian aborigine lan-
guage Warlpiri where words can occur in virtually any order.

e Translate single sentences from one language to another.

e Optimize natural language parsing for use on serial or parallel com-
puters.

This chapter reviews each of these accomplishments. _

What is principle-based parsing? Perhaps it is easiest to say what it is
not. It is not like more traditional parsing that relies on many thousands of
individual, language-particular rules, exemplified by augmented transition
network systems (ATNs) or most systems based on context-free grammars.
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These rule-based parsing systems attempt to describe sentences typolog-
ically by spelling out shallow word surface order and spelling patterns—
passive, dative, and the like.

For instance, consider a “passive” sentence: The ice-cream was eaten.
To understand this sentence, at the very least a parser must be able to
analyze ice-cream as the object of eat—the thing eaten. This is triggered
(in English) by the form of the verb be (here, was) plus the en ending on
the verb eat. A typical rule-based parser might capture this left-to-right
pattern in an IF-THEN rule:

IF: subject filled be—Verb+ed No object
THEN: make the subject the object

Note that this IF-THEN rule directly encodes the left-to-right order of
the English passive pattern, along with all its particular features. It is
appropriate only for English, and only for this particular kind of passive
form.

The basic idea of principle-based parsing is to replace this shallow rule
with a much deeper, smaller, explanatory set of basic principles. In some
ways, this is much like the shift in medical expert systems from a shallow,
descriptivist approach to an explanatory theory based on, for example, a
knowledge of kidney physiology.

- The motivation for the shift from rules to principles is the same in
both domains. Rule systems have many problems. They are too inflexible,
too specific, too fragile, too hard to maintain, and too large. As we will
see, principle-based parsing repairs each of these defects:

e What happens when a sentence is only partially well-formed? Sen-
tences like What do you wonder who likes, or John is proud Bill,
though hard to understand, do not cause people to collapse like a rule-
based system. Rather, people understand such sentences uniformly.
Rule-based language systems have traditionally handled such possi-
bilities by adding weights or more rules that can describe the wrong
sentences. But this makes the rule set larger still.

e  What happens if the rule system is missing a rule that is almost, but
not quite, like the one that handles passives? Consider the sentence
The ice-cream got eaten. This is a simple dialect variant, but unless it
has been preprogrammed into the rule base—often one programmer’s
dialect—the full system will fail on such an example. Of course, once
the problem is known a system can be patched by adding a new rule,
but there is no end to the patches, the maintenance problems, and the
size of the rule system.

e What happens with other languages? The French sentence faire
manger la pomme par Jean (‘was eaten the apple by John’) is like the
English passive, but there is no be form, and the object can follow eat
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(manger). Thus the entire system must be re-tooled for new dialects
and languages, and this in fact has been the traditional approach. In a
principle-based approach, we can view such cases as variations on a ba-
sic theme. Instead of writing a completely new, specialized IF-THEN
rule, we can regard the French (and English) examples as parameter-
ized variants of a set of more primitive, underlying components. The
section “Principle-Based Translation,” in this chapter and the chapter
by Dorr in this volume describe principle-based translation in more
detail.

e  What happens when the rule set becomes too large? Because rules are
fine-grained and language particular, existing rule-based natural lan-
guage systems use thousands of rules. Because parsing algorithms run
as a function of grammar size, an inflated rule size forces poor system
performance. Too much effort is expended trying to build special-
purpose algorithms or hardware when the real source of the problem
is an overly-large rule system. For example, one recent language sys-
tem developed at Boeing contained many thousands of individual rules
just for a portion of English. As a result, even a single sentence could
be analyzed in a thousand different ways or more.

A few principles can replace many rules

In contrast, a principle-based approach aims to reconstruct the vocabulary
of grammatical theory in such a way that surface and language-particular
constructions like passive follow from the interactions of a small set of
primitive elements. Figure 1 illustrates the difference. The top half of the
figure shows a conventional rule-based approach. Each sentence type (a
construction like passive) is described by a different rule. The bottom half
of the figure shows a principle-based approach.

Principles and word meaning building blocks are like atoms in chem-
istry, or axioms in a logic system. By combining just a few dozen atoms,
we can build up a huge number of chemical compounds (sentence rules and
word meanings) instead of listing each compound separately. In the lan-
guage domain, we can replace the surface effect of many rules with longer
deductive chains of just a few axioms. Note that one can get the multi-
plicative effect of ny X my x ... rules by the interaction of ny + no + ...
autonomous modules. Thus, by supplying a dozen or so principles, each
with two or three degrees of freedom, we can encode many thousands of
rules. By varying the parameters, we can describe different dialects and
even different languages. Naturally, no single principle accounts for all the
variation we see in a language, just as no single molecule accounts for all
chemical compounds and reactions. It is the interaction that matters.
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Figure 1. These two figures illustrate the difference between rule-based and
principle-based systems. (a) A rule-based system. Each sentence construction
type, like passive, is described by a distinct rule. (b) A principle-based system.
Sentence types are derived from a smaller basis set of more fundamental principles
that deductively interact to yield the effect of constructions like passive. See the
section on “Principles and Parameters in Parsing Design” for more details on just
how this works.

An outline of things to come

Of course, the principle-based approach raises many questions for parsing.
The next three sections of this chapter will answer each of these three key
questions in turn: ,

1 Is principle-based language analysis possible? Can one describe all
languages, or even one language, as the interaction of a small, universal
set of principles?

2 Can one build parsers that use principles instead of rules?

3 Can one make these parsers computationally efficient?
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While we will defer detailed answers to these questions we can offer a
glimpse at what’s to come now.

Consider first a simple example of how general principles can replace
specific rules. One general principle says that action-expressing phrases in a
sentence must either begin with a verb in some languages, or end with a verb
in others. This basic description of the tree shapes in a language, dubbed
X theory, gives us part of the variation between languages like English and
Spanish on the one hand, and languages like German and Japanese on the
other. In English, the verb must come first, with the object after. A second
principle, called the Case Filter, says that all pronounced nouns like ice-
cream must receive case, either from an active verb like ate or an auxiliary
verb like was; the adjective-like verb eaten does not do the job. Taken
together, these two principles plus a few others conspire to push ice-cream
into its position at the front of a sentence if there is a verb sequence like
was eaten. There is no explicit passive rule.

The section on principle-based parsing for Warlpiri shows how these
principles can be used to build a parser that does not use individual rules.
Drawing on research carried out by Michael Kashket [1986], it also shows
how the same principles can be made to work with a language that is very
different from -Romance languages or German, in this case, the Australian
aborigine language Warlpiri. Warlpiri is a good test case for the principle-
based model because its structure seems at first so different from that of
English, German, or Romance languages. This section also briefly describes
a related design for a principle-based parser, used by Dorr [this volume] and
described in more detail in the section on principle-based translation.

Many principles operate like constraint filters. This lets them ‘handle
the problem of partially well-formed sentences. A principle-based parser
can accommodate language “mistakes” by constraint relaxation. If a sen-
tence is ill-formed, it is simply because one or another principle fails to
hold. In fact, in the principle-based approach, there really is no such thing
as an ungrammatical sentence—this notion doesn’t even really apply. Ev-
ery string of sounds is assigned some interpretation. Some of these happen
to “pass” all the principles, while some fall short in one aresa or another.

For example, consider the sentence, This is the ice-cream that | don’t
know whether it was eaten by John. Technically this sentence is ill-formed,
and it would break existing language interfaces because they would have no
special rule that could apply in such cases. In contrast, a principle-based
system would degrade gracefully. In this example, a locality principle that
limits the distance between words like it and ice-cream is at fault, but
importantly all other principles hold. In particular, the principle that every
sentence has a subject (it) and a verb (eaten) still holds. Sentence analysis
would proceed as before, simply taking note of this violation, which does

not impede inference or understanding. No special weights or extra rules
are required. :
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The principle that a sentence needs a sub ject and object is also param-
eterized, illustrating how principles can ease the task of language transla-
tion. In languages like Spanish and Italian, and under degraded situations
in English, the subject need not be expressed. These and other similar,
but simple, parameters are what makes English different from Spanish or
Italian. Thus our parser does not need special rules to analyze Spanish
or another English dialect; it simply sets its parameters to those values
required for Spanish, such as “the subject may be missing.” Only the dic-
tionary changes from language to language. The section on principle-based
translation in this chapter and Dorr’s chapter in this volume describe an
implemented system, UNITRAN , that adopts this approach.

The final section of this chapter turns to the computational optimiza-
tion of principle-based parsers, carried out by Sandiway Fong at MIT. Be-
cause a principle-based language processor uses several independent con-
straint modules, it also becomes possible to optimize its performance and
test it under a variety of processing assumptions. One can develop an
automatic “compiler” (really a source-to-source translation procedure) for
such constraint systems, because we expect different dialects and different
languages will demand different principle processing topologies for optimal
performance. For instance, in a language like English, information often
comes at the very beginning of phrases to tell us what the phrase will
be like: the tells us that we will be describing an object next. But in
German or Japanese this information may be delayed until the end of a
sentence. Thus different languages, and even different sentences within the
same language, might optimally use different processing strategies. Instead
of hand-coding these, we would like to automatically, perhaps dynamically,
guide the application of constraint modules.

Two general ideas guide principle-based parser design. First, certain
modules are logically dependent on others. For example, the locality prin-
ciple that calculates whether ¢ is too far away from the ice-cream must use
phrases, but phrases are fixed in part by the principle that says whether a
verb comes first or last in a phrase. This dependency structure provides a
kind of flowchart that is amenable to conventional computer science tech-
niques like dataflow analysis.

Second, as a general condition one should apply the strongest con-
straints as early as possible while delaying hypothesis-space expanding pro-
cedures as long as possible. Well-established techniques exist to impose this
ordering among modules by estimating the filtering/expansion power of dif-
ferent principles. Fong calls his resulting design a principle-ordering parser.
He shows that order-of-magnitude improvement is sometimes possible by
optimal ordering.
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Principles and Parameters in Parsing Design

To begin, let us answer the first question about principle-based parsing
raised earlier: can a small number of principles describe natural language?
This is a question about linguistic description, so we rely on linguistic
theory to answer it. Currently, we have adopted a variant of the principles-
and-parameters theory developed at MIT and elsewhere (sometimes called
government-binding or GB theory [Chomsky 1981; Lasnik & Uriagereka,
1988]). Figure 2 shows the topology of the system currently used. It
pictures about a dozen modules or theories, most of which are described
more fully in in the next paragraph. Lines between the modules mark
logical dependencies—certain constraints are defined in terms of others.

Let’s see just what these principles mean and how they work together
to account for passive sentences.

e X theory describes the basic tree shapes allowed in a language.
Roughly, natural languages allow two basic tree forms: function—
argument form, as in English where the verb begins a verb phrase,
a preposition begins a prepositional phrase, and so forth (eat the ice-
cream, with a spoon); and argument—function form, as in Japanese
and much of German.

e The Theta Criterion says that every verb must discharge its the-
matic arguments—its placeholders that flesh out- who did what to
whom. Thus a main sentence with eat must mention the eater and

- optionally the thing eaten, whereas put must mention the thing that
is put somewhere and the location it is put (one can’t have John put
the book).

e The Case Filter says that pronounced (overt) noun phrases like ice-
cream must receive Case. What is meant by case? In simplest terms, it
is much like what is found in a traditional Latin grammar: the subject
‘noun phrase receives nominative case; the direct object of the verb
receives accusative case; the object of a preposition receives oblique
case. The pale residue of this case-marking system shows up in English
in the use of her as an object versus she as a subject: Mary likes
her; She likes Mary. This is what accounts for the difference between
sentences like It 15 likely that John will win versus the (ill-formed) It is
likely John to win. In the first sentence, John receives nominative case
from will; in the second, there is no tensed verb or verb-like element
to give John case, and so the sentence violates the case-filter.

* Binding Theory spells out how pronouns may be related to their
antecedents in certain configurations. For example, compare the sen-
tences,

John thinks that he likes ice-cream
He thinks that John likes ice-cream
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Figure 2. A design for a principle-based parsing system. Each module compo-
nent varies over a limited parametric range. The joint interaction of all modules
replaces the effects of many particular language rules.

In the first sentence, John and he may refer to the same person, while in
the second, they cannot.

e Locality Theory and the Empty Category Principle restrict
where “silent” noun phrases (empty categories) can appear. A silent
noun phrase is not pronounced, but still needed to understand a sen-
tence. For example, in the sentence below,

John wants to like ice-cream

there is a silent noun phrase, that we can denote e, that acts as the subject
of to like ice-cream; just like a pronoun, it refers to John:
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John wants to e like ice-cream

Empty categories cannot appear too far away from their antecedents
(locality) and only in certain configurations (the empty category principle
or ECP). The first example below shows a violation of locality—the empty
category e is too far away from John—and the second a violation of the
ECP. (We will not be concerned in this chapter with exactly how constraints
like the ECP are formulated.)

John seems it is certain e to like ice-cream
John was wanted to e like ice-cream

e The Movement Principle says basically that any phrase can be
moved anywhere. For example, we can change John likes ice-cream
to Ice-cream, John likes. (Of course, this freedom may violate other
principles. )

Having covered these basic principles, we can now see in detail how they
interact to yield the ice-cream was eaten. If we think of the principles as
axioms, the passive construction emerges as a theorem. But the deductive.
chain is much longer than in a simple IF-THEN rule system, where there
is a direct, one-step connection between passive sentences and rules. The
following sequence outlines the steps:

X theory sets the basic function-argument order of English

!

was eaten the ice-cream

l

Eaten is an adjective, and so does not assign case

l

Ice-cream must receive case
1
So ice-cream moves to subject position

where it receives nominative case

| .
This leaves behind an empty category, linked to ice-cream
(so that eat can meet the Theta Criterion and
make ice-cream the thing eaten)

4

the ice-cream was eaten e

This may seem like a lot of deductive work for one sentence, but the im-
portant point is that the same principles combined in different ways yield
different sentences, just as the same molecules can combine in different
ways to make many different chemical compounds. For example, in the
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sentence,
It was believed that the ice-cream was eaten

no movement is required because ice-cream already receives nominative
case from that. (This would show up more clearly if ice-cream were replaced
with a pronoun. Then the pronoun would have its nominative form: It was
believed that he was eaten.)

Principles and parsing

So far, all that we have done with principles is describe sentences. How
can we use principles to parse sentences—that is, to assign structure to
sentences that shows what the subject and object are, what the thematic
roles are (who did what to whom), and so forth? In some way we must
reproduce the deductions that connect axioms to sentences. Of course, all
we have to start with is the input sentence, a dictionary, and the principles
themselves.

While there are several possible approaches, it is useful to divide the
principles into one of two classes: generators and filters.

Generators produce or hypothesize possible structures. For example,
consider X Theory. Given a string of words, say, eat the ice-cream, X the-
ory would say that eat is possibly the beginning of a verb phrase, with the
ice-cream as its argument. Similarly, Movement Theory creates possible
structures. Given a valid X structure, Movement Theory can displace var-
lous noun phrases like ice-cream to create new ones. Binding Theory also
generates new output possibilities from old ones. For example, given the
sentence John thinks that he likes ice-cream, he can refer either to John or
someone else not mentioned in the sentence, thus generating two candidate
outputs.

Filters weed out possible structures. Most of the remaining boxes
in the module picture are filters—the Case Filter, the Theta Criterion,
the Empty Category Principle, and Locality Theory. For example, if the
structure John is proud ice-cream-is input to the Case Filter, it would be
filtered out as a violation (it should be proud of ice-cream, where of assigns
case to ice-cream).

Given this generator-filter model, the simplest way to build a parser is
as a cascaded sequence of principle modules, as shown in figure 3(a). (For
reasons of space the figure does not show all the possible principle modules.)
The input sentence, the ice-cream was eaten, passes into the first module, in
the figure X Theory, which produces several output possibilities indicated
by multiple arrows (depending on word and structural ambiguities). The
basic point is that these hypotheses are driven from the input in a bottom-
up way. Given a verb, the system posits that a verb phrase must start; if it
is' a preposition, then a prepositional phrase must begin, and so on. Note
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that this requires access to a dictionary. As usual, these hypotheses are
subject to numerous ambiguities (words may be either nouns or verbs, for
example), but we will defer these standard problems here. All the usual
techniques for efficient bottom-up processing, such as lookahead, can be
useful here.

(@ structure

ECP

Binding

Movement

X theory

sentence

Underspecified > GB constraint
structure builder ¢ filters

Figure 3. Principles may be classified as generators and filters and then or-
ganized into parsers in a variety of ways. (a) A sequential parser design. The
input sentence is successively expanded and collapsed into a series of structural
hypotheses. Generators expand the hypothesis space, while filters narrow it
down. (b) A coroutine parser design, as used by Dorr in her translation Sys-
tem. Structure-building generators operate in tandem with constraint modules.

Alternatively, such a system could enumerate all possible function-argu-
ment structures before even looking at the input until it hits upon one
that matches the input. Such a straightforwardly hallucinatory approach
is known to be fraught with hazards unless special precautions are taken
(it may not terminate, for example). For this reason, almost all existing
principle-based systems attempt to access the information in the input
sentence as quickly as possible, and this will be the case in all the principle-
based parsing systems described in the rest of this chapter.

Continuing with our rough conceptual picture, the hypotheses out-
put from the X component are fed into the next module down the line,
the Movement component, which also expands the number of hypothesized
structures. Binding also generates multiple hypotheses. Finally, the ECP
whittles down these multiple hypotheses to just one: the output struc-
ture the ice-cream; was eaten e; (the subscript ¢ indicates that the empty
category following eaten is linked to ice-cream). In each step, important
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information from a dictionary or lexicon may be accessed. For instance, it
is the lexicon that says just what thematic roles a verb requires—that eat
needs an eater and an optional thing eaten. This information must figure
in the hypotheses that are generated and filtered.

Because many of the constraints depend on particular structural con-
figurations as inputs the principle modules can only be ordered in certain
ways. For instance, case is often assigned only under a particular local
structural arrangement—the element receiving case is an immediately ad-
jacent sister to a verb or a preposition. These logical dependencies must
be respected in any principle parser design. ;

As an alternative to the straightforward sequential design it is possible
to coroutine the operation of filters and generators, alternating between
structure-building X and movement components, and filters (part (b) of
figure 3). This approach has been adopted by Dorr for her translation
system (see the “Principle-Based Translation” section). Dorr exploits. the
structure information in X theory to drive an Earley-type parser that is
coroutined (operates in tandem) with filtering constraints. Whenever the

X parse can no longer be extended, filters and some generators are called
to weed out underconstrained parsers or propose parsing extensions. See
the next section for more details on this coroutine design, and the final
section for a more systematic framework in which to evaluate these different

architectures.

Having seen how a principle-based parser might work in broad outline,
we now review two important principle-based parsers developed over the
past three years at the MIT Artificial Intelligence Laboratory: Kashket’s
Warlpiri parser and Dorr’s translation system. The Warlpiri parser will be
described first, in the rest of this section while Dorr’s parser will be covered
in the “Principle-Based Translation” section.

Principle-based parsing for Warlpiri

Warlpiri provides a good testbed for the principle-based parsing approach
because it seems on the surface to look very different from English, German,
or the Romance languages. Warlpiri word order is quite free. Even so,
Kashket [1986] shows that the difference between a parser for Warlpiri
and one for English is roughly a parametric difference in case marking:
when the verb marks case, as in English, then this tends to fix word order;
while if other elements mark case, as in Latin or Warlpiri, or some parts
of English, then word order tends to be free. Let’s examine how Kashket’s
model works.

By using a vocabulary other than the concatenation and hierarchy that
are blended in context-free rules we can easily account for the free-word
order found in Warlpiri as well as that part of English that appears to




Chapter 12 Principle-based Parsing 299

exhibit fixed-word order (subject-verb-object) and those parts of English
that are relatively free (prepositional phrases). One and the same parser
will work for both. In contrast, because context-free rules can use only
concatenation (linear position) to encode the more basic principles of case
marking and case assignment, they ultimately fail to perspicuously describe
the range of possibilities seen in natural languages. The result is that a
rule-based parser for free-word order languages almost invariably writes
out all possible word order sequences, leading to a corresponding increase
In grammar size.

Warlpiri and rule-based parsing

To begin, let’s consider some variations in a simple Warlpiri sentence. All
permutations are legal. (Hyphens are added for readability):

Ngajulu-rlu  ka-rna-rla punta-rni kurdu-ku karli
I AUX take-NONpast child boomerang

‘I am taking the boomerang from the child’

Kurdu-ku ka-rna-rla ngajulu-rlu punta-rni karli
child AUX I - take-NONpast boomerang
‘From the child I am taking the boomerang’

Karli ka-rna-rla  kurdu-ku ngajulu-rlu punta-rni
boomerang AUX child I take-NONpast

‘It is the boomerang I am taking from the child’

(Plus 21 other possibilities)

Although phrase order is free except for the rigid auxiliary verb-like
element second position (as in German), phrasal variations lead to different
emphasis in topic and focus, as the translations indicate. In contrast, mor-
pheme order is fixed: at the level of words, Warlpiri is in argument-function
form, or what is called a head final language, with markers rilu (ergative),
rni (tense, nonpast), and ku (dative) appearing word final. (The absolutive
case marker is null and so does not show up explicitly on boomerang. Also,
there are basically just two lexical categories: nouns and verbs.)

How could we write a traditional rule system to describe these con-
structions? Let us consider several possibilities and discuss their deficien-
cies.

First, aiming at mere string coverage, we could explicitly write out all
possible phrasal expansions. (Here, the tags S and O stand for subject
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and object and we ignore the AUX element, while NP stands for a noun
- phrase.)

S — NP-SNP-OV
S — 'NP-SVNP-O
S — NP-ONP-SV
S — NP-OV NP-S
S — VNP-SNP-O
S — VNP-O NP-S

Plainly, this is an unperspicuous grammar that also suffers from com-
putational defects: By explicitly writing out the rules we have missed the
‘basic fact that the phrase order is free. To put the same point another way,
the grammar would be almost as simple (almost as small) if we omitted
the last rule S— V NP-O NP-S. And the grammar is large, because it con-
tains more rules, and will thus run more slowly using standard context-free
parsing algorithms.

Perhaps more importantly though, this approach ignores the basic and
well-known asymmetry between subjects and grammatical functionslike di-
rect objects and indirect objects (see Laughren [1987] for discussion). For
instance, it is the subject, not the object, that can be empty in construc-
tions such as I wanted to leave, which does not have a counterpart I wanted
Bill to leave meaning I wanted Bill to leave me. This asymmetry leads di-
rectly to positing a certain hierarchical structure that explicitly represents
the domination of the object by the verb, with the noun phrase subject
external to the verb phrase. Thus a better context-free grammar would be
something like this:

S — NP-S VP
VP — VNP-O

But as is plain, this sort of grammar cannot parse the sentence order
V NP-S NP-O that is observed in Warlpiri:

punta-rni ka-rna-rla  Ngajulu-rlu = kurdu-ku karli
take-NONpast AUX I child boomerang

‘taking am I the boomerang from the child’

To get over this hurdle various proposals have been made: invisible
verb phrase nodes, movement rules, and the like. What these rescue op-
erations have in common is some way to break apart the linear phrasal
concatenation forced on us by context-free rules.

One could resort to a change in algorithm in order to overcome this
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hurdle. One such proposal that has been made in the context of a func-
tional unification grammar for Finnish [Kartunnen & Kay 1985] is to say
simply that one particular phrasal order is stored and the permutations
that actually appear are generated on demand. The base grammar would
remain small. As Kartunnen and Kay put it, “the opportunity is to work
with a much smaller grammar by embodying the permutation property in
the algorithm itself.”

As we will see, in effect this is the approach adopted to parse Warlpiri
via principles. There is a key distinction. In the Warlpiri system the
difference lies not with some special algorithm, but probably where it ought
to lie: with the statement of the grammar of Warlpiri. In fact, nothing
special need be said about the Warlpiri parsing algorithm at all: it does not
have to embody some permutation procedure, except implicitly as allowed
by the principles of the grammar. Further, the very same parser will work
for English as well—crucially, as mentioned, the only changes that have to
be stated are the linguistic differences between English and Warlpiri, which
have to be stated anyway.

Parsing Warlpiri with principles

Kashket’s key insight is to apply case marking and case assignment prin-
ciples for Warlpiri at two autonomous representations. One representation
requires precedence-ordered trees and one does not, and this bifurcation
‘allows us to account at the same time for the rigid morpheme order in
Warlpiri along with its free word order:

e  Precedence structure: This level expresses, among other things, prece-
dence relations (one morpheme precedes or follows another).

e  Syntactic structure: This level expresses hierarchical relations (one
phrase dominates another). The phrasal elements bear no precedence
relations to one another.

The claim, then, is that phrasal syntax really needs only hierarchical infor-
mation, not precedence information (as is reflected quite generally in the
order-free nature of almost all principle-based predicates for syntax).

Having split apart the representations, Kashket proposes to split apart
case marking and case assignment along these very same representational
fault lines. It is this division of principles that will allow us to capture the
full range of free/fixed word-order phenomena.

Case marking is taken to be an essentially word based (or phonological)
process, hence one that logically ought to be represented at the level of
precedence structure. Therefore, case marking depends upon precedence
information, because this is encoded at the morphemic level. As expected,
it is directional, and operates completely locally, under adjacency.
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In particular, in Warlpiri case marking is to the left. This makes
Warlpiri a head final language at the morpheme level: case markers must
appear at the end of words. Let us see how this works in an example.

In the word ngajulu-rlu, the ergative case marker rlu case marks nga-
julu (English I) to the left, so this word is well-formed; we may imagine
it comprising a complete “case phrase” unit ready to be analyzed at the
phrasal level, as indicated in figure 4.

Case
Phrase

Noun <<—— Case Case
mark

ngajulu iy

Figure 4. Directional case marking forces fixed internal word order in Warlpiri.
The “heads” of Warlpiri words are final, with case marking to the left.

Crucially, in Warlpiri verbs are not case markers. We shall see that this
forces an essential difference between a so-called “configurational” language
like English and “nonconfigurational” languages like Warlpiri. The parser
need only know that in English, a verb is a case marker, and that in
Warlpiri, a verb is not a case marker.

Case assignment is carried out at the phrasal level under sisterhood,
but with one crucial difference: because phrases do not even encode prece-
dence information, case assignment cannot refer to order or adjacency at
all and is nondirectional. This is what will allow Warlpiri phrases to be
order free.

Let us consider another example to see how this works. Take the
word sequence ngajulu-riu punta-rni karli (I took the boomerang).! This is
first parsed as three separate word-level units: ngajulu-riu is a noun-case
combination that is case marked as usual to form what Kashket calls a C
unit; punta-rni is a verb-tense combination that forms what Kashket calls
a V unit; while karli has a null absolutive marker at its end, so is case-
marked (as usual) to form a C phrase. Note that all three words are in
argument-function (head final) and well-formed; if, for example, the tense
marker had a noun to its left, then such a structure would be rejected.

The verb morpheme unit is now projected into syntax under the usual

X format: it contains a node, a V node, and a V node. Under Kashket’s
model, the V node assigns absolutive or dative case (in either direction);

1The AUX unit will be ignored for these and all remaining examples.
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because karli is marked for absolutive case, it receives this case no matter

whether it is to the left or to the right of punta-rni. Similarly, V case
assigns ergative (either to the right or left) Finally, the association between

thematic roles and cases is rigid in Warlpiri, so karli is identified as the
THEME and ngajulu-rlu as AGENT:

AGENT < ERGATIVE
THEME < ABSOLUTIVE
PATH — DATIVE

Figure 5 shows the resulting syntactic tree. It is important not to be
misled by the order of the subtrees shown in this structure. While one
must write the subtrees in some order, in fact the first C could have been
written to the right of the V instead of on the left.

G/V\ Vv
AN

N C Vv . C
ngajulu rlu punta rni
, N C

I took )

karli

the boomerang

Figure 5. A Warlpiri syntactic structure for I took the boomerang. It is impor-
tant to note that the order of subtrees is not encoded at this level, even though
the picture must show some order on the page.

By splitting up case marking and case assignment principles—via adjacency
and dominance—and using these principles in parsing, we can account for
the difference between Warlpiri and English. In English a verb is a case
marker, so position matters: the verb case marks subject and object at the
morpheme level where linear precedence is encoded. (More precisely, it is
the verb’s tense that marks the subject’s nominative case to the left.) The
result is that we usually get the order subject-verb-object in English.

Note that English also exhibits some phrase order freedom: preposi-
tional phrases may appear relatively freely after a verb. Under the current
account, that is because case assignment is carried out internally by the
preposition. There is no ordering among phrases.
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The Warlpiri parser accesses principles, not rules

With this overview behind us, we can now give the details of Kashket’s
parser, and cover some fine points omitted earlier.

The parser consists of two stages: one for precedence structure and
one for syntactic (hierarchical) structure. These two operate in tandem.
Input sentences are passed to the precedence-based lexical parser, which
breaks words into morphemes and outputs an ordered forest of trees. Every
morpheme is also sent to the hierarchical parser, which projects informa-
tion based on the lexicon and the lexical parser’s output and attempts
to produce a single hierarchical structure with unordered subtrees. No
context-free rules or rules of any kind (in the usual sense) are accessed.
The dictionary contains basic syntactic category information as well as
actions (for a case or tense marker) that say what kind of element the
case or tense marker selects (noun or verb), and, in the case of a verb,
what arguments it case assigns. Table 1 shows how the actual Warlpiri
dictionary transparently encodes the case selection (marking), and assign-
ment actions illustrated earlier; these properties are directly accessed by
the parser. (Some of the details are omitted here.)

The lexical parser determines the well-formedness of words according
to morphological constraints. Basically, this stage operates on groups of
two morphemes at a time. After the first morpheme is input no action
can occur. The second input morpheme prompts word construction: the
parser looks at the unit immediately to its left to see whether it may be
combined (selected) by the case marker. For example, if the case marker
is the tense element rni, and the unit to the left is not a verb, then the
structure is ill-formed, and the two units remain detached; but if the unit
to the left is a verb, then combination can occur and a verb node produced,
as described earlier. A dictionary is consulted here, as is typical. In ad-
dition, if a verb projection (predicate) is being formed, the dictionary will
supply case assignment actions to be associated with the projections of the
verb, as appropriate. (Note that if there is a null case marker, as with
the absolutive, then we assume that morphological analysis supplies a null
second morpheme.)

As each word is completely constructed it is fed to the second stage,
the phrasal parser. This stage’s job is simply to carry out case assignment,
in effect “linking” arguments to any predicate and thereby licensing them.
Recall that we associate case assignment actions with each V node pro-
jection, as retrieved from a dictionary. The phrasal parser will execute all
- applicable actions, globally, until no more actions apply, but, plainly, a case
marked argument must be present before case assignment can take place.
Note that the actions consider all possible directional case assignments,
across all subphrases; this permits free phrasal order.
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RLA: actions: SELECT: (OBJECT ((AUXILIARY . SUBJECT)))
data: MORPHEME: RLA
NUMBER: SINGULAR
PERSON: 3
AUXILIARY: OBJECT
RNA: actions: SELECT: (SUBJECT ((AUXILIARY . BASE)))
data: MORPHEME: RNA
NUMBER: SINGULAR
PERSON 1
AUXILIARY: SUBJECT
KA:. actions: SELECT: (AUXILIARY ((V . +) (N .-)))
data: MORPHEME: KA
TENSE: PRESENT
AUXILIARY: BASE
RNI: actions: SELECT (+ (( V. +) (N . -) (CONJUGATION . 2)))
ASSIGN: ABSOLUTIVE
data: MORPHEME: RNI .
TENSE: NONPAST TNS: +
PUNTA.: actions:
data: MORPHEME: PUNTA
THETA-ROLES: (AGENT THEME SOURCE)
CONJUGATION: 2 -
N:- V:+
RLU: actions: SELECT: (ERGATIVE (( V. -)(N . +)))
MARK: ERGATIVE
data: MORPHEME: RLU
PERCOLATE: T
CASE: ERGATIVE
KU: actions: SELECT: (DATIVE ((V .-){((N . +))) -
MARK: DATIVE
ASSIGN: DATIVE
data: MORPHEME: KU
PERCOLATE: T
CASE: DATIVE
NGAJULU actions:
’ : data: MORPHEME: NGAJULU
" NUMBER: SINGULAR
PERSON: 1
N:+ V.-
KURDU: actions:
data: MORPHEME: KURDU
N:+ V:-
KARLL actions:
data: . MORPHEME: KARLI .
N:+ V-

Table 1. The Warlpiri dictionary directly encodes X features, case marking, and

case assignment.
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Finally, we note that the auxiliary is handled specially: its dictionary
entry says that it takes a verb projection as an argument. (The aux-second
constraint receives no explanation on this account.)

An example parse

An example parse should make the algorithm clearer. Consider an object-
verb-subject-object sentence form, such as kurdu-ku ka-rna-rla punta-rni
ngajulu-riu karli. At the word level, nothing happens when the first mor-
pheme kurdu is processed. The second morpheme, ku, adds a dative case
marker, and it selects the noun to its left (a directional, precedence selec-
tion), forming a complete word with case as the root of the phrase. The
next morphemes comprise the auxiliary and are projected as an auxiliary
phrase by a procedure not described here. Third, the verb take with its
tense rni marker is encountered. The tense selects the verb to its left,
forming a verb unit, which is passed to the phrasal parser. At the phrasal
level the tense marking itself is attached to the A(uxiliary) unit. Also at the

phrasal level, the verb unit is projected to a V. Now the morpheme ngajulu
enters the input and is processed; it is noted as a noun, but no actions can
apply to it because it is not yet case marked. The next morpheme, rlu,
combines to its left with the noun to case mark it ergative and form a C
phrase; this is passed to the phrasal parser. Figure 6 gives a snapshot of
the hierarchical structure built so far, where we have deliberately placed
ngajulu-rlu to the left of the V projection node to indicate the order-free
character of phrasal structure. Note that the tense element rni has been
removed from the verb (it is attached to the auxiliary unit at this level of
representation).

v
T 1
N C N C I
ngajulu rlu kurdu ku punta

Figure 6. Starting to parse a Warlpiri sentence. The first three words, up
through the verb and to the subject that follows it, have been analyzed. This
figure represents hierarchical structure, so in fact the tense element rni, which is
part of the verb at the precedence structure level, does not appear here.

Now any actions attached to the V(erb) projected nodes apply if possible.
Because there is an ergative case-marked argument, ergative case assign-
ment applies, linking C to the V phrase. Similarly dative assignment is
possible and kurdu-ku is attached (see figure 7).
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5
>

ngajulu rlu kurdu ku punta rni
ERG DAT

Figure 7. Linking the ergative subject and dative object in a Warlpiri sentence.
These actions are forced by the dictionary entries associated with projected verb
elements.

Because no more actions. apply, karli enters the lexical parser; with
its null absolute case marker, it is a well-formed word, and is passed as
a C to the phrasal parser. Once again, a V projection action can now
apply to this case marked argument. This action assigns karli absolutive
case (the THEME of the sentence). Figure 8 shows the final result. “PS”
refers to the level of word structure, or precedence structure, while “SS” is
hierarchical phrase structure. The figure also shows how the tense marker
rni is attached as part of the auxiliary or inflection phrase that dominates
the entire phrase structure.

Kashket’s implemented parser can handle a far wider range of con-
structions than shown here, including compound nouns. These show a par-
ticularly interesting interaction between lexical parsing and phrasal pars-
ing, and indicates the flexibility of a rule-less system. If there is a string of
nouns in the form:

Noun Noun Noun Noun ... Case

then there might be some ambiguity as to whether the unmarked nouns get
absolutive case. But this does not occur; all the nouns are transmitted the
same case at the tail end of the phrase. The reason is that when nouns ap-
pear in this kind of a group, they are all part of a single intonational phrase,
and therefore can be phonologically recognized as a single unit. We may
assume this preprocessing to take place prior to or at the time of morpheme
processing, as part of speech analysis. In contrast, if compound Nouns ap-
pear discontinuously, then they must all be case marked with the same
marker, and again there is no parsing ambiguity. In this way, Kashket’s
system can quite easily accommodate additional information sources that
are superimposed on his basic constraints.

Let us summarize why a principle-based approach succeeds where a
context-free rule approach fails. Kashket’s principled division into two
distinct representations, a morphemic level obeying adjacency and linear
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PS:

¢ \ v -/\ ,/C—\
c A AAVT N cC N (58
kurdu ku ka ra rlapunta i ngajulu rlu  karli ‘abs

A
ss: V_—/ >
|

/AN

TAAA
mi ka rna rla

c c
/\ _/\ /\ v
N o N c N e |

ngajulu rlu kurdu ku karli ‘abs
ERG DAT ABS

punta

Figure 8. Linking in the Absolutive argument—which is phonologically absent—
in the Warlpiri example sentence gives us the THEME of the sentence. This figure
shows both the final precedence (PS) and syntactic structures (SS).

precedence, and the phrasal obeying just dominance relations, forces rigid
morpheme order and permits free phrase order. At the same time, the case
marking/case assignment vocabulary lets us state the difference between
languages like English and languages like Warlpiri in a straightforward
grammatical way as a difference between which elements case mark and
which do not, all without resorting to novel parsing procedures for either
languages.

Kashket’s parsing algorithm for English and Warlpiri will look exactly
the same. Nothing need be said other than what minimally must be said
anyway about the difference between the two languages: that verbs case
mark in English, but not in Warlpiri. In this way, a uniform principle-
based system can significantly advance our understanding of the free-word
order /fixed-word order continuum, and show us how one kind of parser can
handle many different kinds of languages.

Principle-Based Translation

We next turn to a principle-based parsing for a different domain: language
translation. We describe a particular principle-based translation system,
implemented by Dorr [1987]. Dorr’s system successfully overcomes the
difficulties of a rule-based approach. It also illustrates a coroutine design
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for principle-based parsing, that interleaves generators and filters. (Dorr’s
chapter in this volume shows how her system handles some of the other
difficulties in translation.) We will see how this work on a Spanish example
sentence that would ordinarily require a number of complex rules for its
description:
s Qué vio?

This short sentence is deceptively simple. It actually shows three inter-
esting phenomena: a null (missing) subject; inversion of the verb; and
movement of gqué to the front of the sentence. A traditional rule-based
system would describe each of these explicitly. As we shall see, Dorr’s sys-
tem can describe them all via the same parameters that are required for
English.

Dorr’s parser works by using a standard context-free parser, the Ear-
ley algorithm, on very slightly expanded X skeleton tree structures. These
skeletons guide the Earley algorithm parser working in tandem with other
principles. By modularizing the principles in this way significant compu-
tational efficiencies are realized.

Dorr assumes that X theory provides the basic phrase configuration
possibilities (across all languages). The basic rules,

X = (Specifier) X
X = X (Complement,)

are combined with two rules to handle adjuncts,

X = (Adjunct)_f (Adjunct)
X = (Adjunct)X (Adjunct)

- where parenthesized symbols are optional.

Some terminology is useful here. A specifier is simply a word like a deter-
miner that further specifies the properties of a phrase. A complement is
just what we have been calling the arguments of a verb or a preposition.
An adjunct is an optional phrase that need not be part of a verb’s thematic
structure.

In addition, Dorr sets a parameter so that adjuncts may occur before
or after the specifier and before or after the complement (in a specifier-
head-complement language). Finally, if we vary the order of specifier and
complement with respect to the head, we have (assuming just one level
of recursion) the 22 = 4 possible tree topologies shown in figure 9, where
(a) corresponds, for example, to English phrase structure order. What
Dorr has done, then, is to partially “compile out” information about skele-
tal phrase structure possibilities. Note that these skeletons do provide
topological information for parsing but do not provide any detail about
categorial identity or verb selection information—for instance, whether eat
must take an object or not. However, the system can access online lexical
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category information—whether a word is a noun or a verb, or its binary
feature equivalents. It also knows about a few other parameters in each
particular language, and multiplies these into the X skeletons: choice of
specifier, what a possible empty category can be in a particular language.
To summarize, the following information is precompiled in Dorr’s system:

e The X order for a language.

e Specifier choice (for example, determiner for N in Spanish).
e  The adjunction possibilities (for example, clitic le can adjoin to V in
Spanish).

e Default values for nonlexical heads (for example, v complement for
I(nflection) in Spanish) (Here, Inflection simply means an element
bearing tense, like the auxiliary verb will or would in English.)

To get the actual context-free rules for Spanish, we simply instantiate the
X template with values for X={N, V, P, A } at the time parsing occurs plus
two rules for I(nflections) and C(omplementizers), following details that are
irrelevant here. For Spanish, the system knows that the choice of specifier

for C may be a wh-phrase like which or what; and it also knows that if a
COMP head is absent, then the complement of C is I. Finally, it knows

that a V(erb) and N are adjunction possibilities. Note that these rules do
not form a complete description of Spanish, and are not intended to: they
are indeed underconstrained. The entire X skeleton system multiplies out
to on the order of a hundred or so context-free rules.

Dorr’s full parser works by using the X skeleton rules as a driver pro-
gram coroutined with all remaining principles, as sketched in table 2. The
X component vastly overgenerates; it builds underspecified phrase structure
because it does not access details of the thematic roles each verb demands.
The actual parser is simply an Earley parser, using the context-free rules
given by X expansion. As each word is processed, the parser uses the stan-
dard Earley algorithm PUSH, SCAN, or POP actions until no more actions
trigger. It then calls on the remaining principles like the Case Filter or the
Theta Criterion. These principles also call on the PUSH, SCAN, and POP
actions, but in a much more complicated way. In effect, the skeletal parser
has only a vague idea of the actual structure of sentences, which is used
just to keep the Earley algorithm’s PUSH-SCAN-POP sequence going. By
splitting up the computational work in this way, we can vastly reduce the
size of the context-free component needed, because we do not multiply out
the rules used. :

The principle module component has three tasks, accessed on demand:
first, it weeds out bad parses (for example, a parse that calls for a com-
plement when the verb does not need one or if bounding conditions are
violated); second, it tries out possibilities that the X skeletal parser does
not know about (for example, it can PREDICT that an empty category
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Figure 9. Dorr’s X theory provides for four basic X skeleton structures on which
to base further computation.

must be present at a certain point); and third, it tries to extend the Earley
parse to a point where skeletal parsing can take over again (for example,
by assigning and checking thematic roles, it can get the parse to the point
where a phrase is complete, and so the Earley algorithm can execute a POP
action).

Table 2 summarizes how work is split between the X component and
the remaining principles. The overall effect is to implement a back-and-
forth flow of information between the Earley parser actions and the filtering
constraints and actions. (All parsing possibilities are carried along in par-
allel, as is typical with the Earley algorithm.)

For each particular language, there will also be a set of parameterized
choices in the X and constraint modules. For example, Spanish permits N,
wh-phrase, V(erb), I(nflection), have-aux, and be-aux as empty categories;

while English permits only N and wh-phrase. These are used for predicting
an empty category at PUSH time.
To see how this all fits together, consider the simple sentence 5 Qué vio?
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ACTION Earley parser Principle Constraint
Module

Predict empty category

PUSH -| Expand nonterminal
Check empty category
and bounding

Determine argument
SCAN Traverse terminal structure

Perform feature
matching

Assign thematic roles
POP Complete nonterminal
Check theta criterion

Table 2. The Earley parser works in tandem with principle-based constraints in
Dorr’s parsing design. Each standard parser action (start a phrase, scan a token,
complete a phrase) runs one or more different constraint checks or structure-
building routines.

(“What did she/he see”). Figures 10 and 11 show the parsing sequence and
final results. There are four final generated trees, labeled (a)—(d), of which
just one, (b), is valid. The figure carries this labeling through several steps
to show where each tree comes from.

As mentioned, this sentence exhibits three interesting Spanish syntac-
tic phenomena: a null subject; inversion of the verb; and movement of qué
to the front of the sentence. All of this can be captured without explicit
rules.

Morphological analysis first reduces this to the actual parsed form
4 Qué ver?+features past, singular, third person (with the root form for
the verb, as is typical). The parse itself then begins.

In step 1 as shown in figure 10, the parser first accesses the X skeleton
for C, which is simply C-spec—C-C-comp (in Spanish), and where C need
not be overt. A precompiled parameter particular for Spanish forces selec-

tion of T to be the complement of C, because there is no head present. Qué

is then scanned (attached) to C as its (optional) specifier (note once again
that this may lead to overgeneration because no conditions are checked at
this point to determine whether this attachment is in fact correct).

Next, the expansion of T has two X precompiled possibilities, both of
which are pursued by the Earley algorithm.

First, I may be expanded as V-1 (with V filling the adjunct slot of

f); let us continue to call this parse (a). (Here, V is one of the adjunction
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possibilities that has been compiled out beforehand; adjunction is assumed

to occur at the X level.) Second, I may be expanded to contain N in I-spec
(parse c, step 1.) At this point, the parser has access to the next word,

ver, a verb. This rules out any expansion of N as its usual spec-head-comp
sequence. For this parse then, no further X actions can occur and the
parser consults the principle constraint module.

Moving on to step 2 of the parse, the constraint module determines
that the next symbol to operate on for parse (c) is a nonterminal; hence,
a PUSH is required. The corresponding action is to predict an empty
category. There are two types of empty categories in the system: a trace,
the position of a moved noun phrase, and pro, an empty pronominal. Both
are predicted here: there is a possible antecedent that is not too far away,

and the subject position (first N under I) is still open. (Several principles
come into play here, notably bounding; each is checked separately on-line.)
We will call these two ongoing possibilities parses (2¢) and (2d). (For parse
(2¢), the binding module links the trace to gué; for parse (2d), the system
knows that only one special kind of empty category can be placed in the
relevant position.) The principle constraint module has nothing to say
about parse possibility 1, and parsing is returned to the X component.
Finally, still in step 2, the precompiled X skeleton notes that I is
currently absent, and so adds the (precompiled) complement possibility of

V for parses (2¢) and (2d).

We proceed to step 3. The parser next scans ver. It can be attached
to the V(erb) slot for parse (3a). The constraint module is then called
upon: its job is to determine the argument structure for the verb ver. The

lexical entry for ver predicts an N complement.? For parses (c) and (d)
this prediction may be realized only as an empty category trace because
there is no more input, linked to the antecedent empty category; for parse

(a), however, the subject position, known to be (precompiled as) N, is still
open, so either two possible empty category types may be predicted here,
yielding parses (4a) and a new parse (4b). In all, there are now four parses.
(In so doing the parser rules out many possible realizations of the specifier
position for I, but we will not cover these here.)

All words are now scanned, so the principle constraint module is now
called on to check for any additional actions (step 4). For parses (c) and
(d), all that remains is thematic checking: the Theta Condition says that
each arguments gets one and only one thematic role. However, both parses
(c) and (d) violate this condition because two semantic roles are assigned
to the object position: the object is both goal and also, via its antecedent
linking, agent. These parses are thrown out.

2This is actually done in a more principled way, by projection from lexical-
conceptual structure, but we ignore this detail here.
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For parses (a) and (b), additional actions are possible (steps 5-7).

The complement of Tis precompiled as a V (as dictated by a precompiled
parameter, not a rule, because I is empty) (step 5). Because there is no

word present, this v may be expanded (in Spanish) by a precompiled X
template as an empty verb (because verbs may be traces), linked to ver plus
(via online accessed subcategorization facts because of linking to ver) an

N complement (steps 5 and 6, parses (a) and (b)). Finally, the constraint
module must again be accessed at this point, because the parser has just

predicted an N complement. Constraint principles dictate that the N may
be realized only as an empty category trace in this position, and the results
are shown in 7(a) and 7(b). Transliterated, parse (a) means “What saw”;
parse (b), “What did she/he see”; parse (c), “What did what see itself”;
and parse (d), “What did she/he see herself/himself”.

Note that of the remaining two possible parses, (a) and (b), (a) is ruled
out by feature checking, because ver demands an animate subject. This
leaves only parse (b) as valid, “What did she/he see” (with the null subject
parameter in Spanish permitting an empty category in subject position).
Note that the three syntactic phenomena of null subject, inversion, and
movement are covered by filtering principles guiding the X parse, rather
than by particular rules.

The Computational Implementation of Principle-Based
Parsers

We have now described two different ways to organize a principle-based
system for parsing. Kashket’s parser operated in a bottom-up, serial fash-
ion; Dorr’s coroutined X parsing with constraint filtering. But many other
architectures are possible. Are any of these best for all natural languages?
For any natural language?

In an attempt to examine parser architecture more systematically, in
this section we shall draw on the work of Fong [1989]. In particular, Fong
has studied the problem of reordering principles to avoid doing unnecessary
work. We will see that although a globally optimal strategy of principle
ordering is impossible, it is possible to use standard heuristic techniques for
conjunct ordering developed in other domains of Al to reduce parsing time
by up to an order of magnitude. Interestingly, this leads to a parser that is
dynamically varied, according to the type of sentence it must process—this
is in contrast to the usually fixed algorithmic regime of a rule-based system.

The key questions about principle-ordering are these:

e  What effect, if any, does principle-ordering have on the amount of work
needed to parse a given sentence?
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Figure 10. Beginning of the parse of 5Qué vio? in Dorr’s system. This simple
Spanish sentence has four possible parses, but only one is valid. This figure shows
parsing steps 1-2. Parsing steps 37 are continued onto the next figures. (There
are no trees 1(b)-3(b) or 1(d) because possibilities (b) and (d) will arise from the
splitting of tree hypotheses in later steps. The e nodes stand for absent nodes,
not empty categories.)
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Figure 11. Continuation of the previous pafse of ;Qué vio?, steps 3—4. This

simple Spanish sentence has four possible parses, but only one is vahd Parses
4(c) and 4(d) remain the same through the next steps 5-7.
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(6(c)--6(d) same as 5(c) & (d))
(7(c)--7(d) same as 5(c) & (d))
7(c)= What did what see 7(d)= What did

itself she/he see
herself/himself

Figure 12. Conclusion of the éQué vio? parse, steps 5-7. Ounly parse 7(b)
passes all the conditions, corresponding to What did she/he see?. Parse 7(a)
corresponds to the ill-formed What saw. Parses (c)—(d) are the same as they

were in step 4, and correspond to the ill-formed sentences What did what see
itself and What did she/he see herself/himself .

e  If the effect of principle-ordering is significant, then are some orderings
‘much better than others?

e Ifso, is it possible to predict (and explain) which ones these are?

A novel, logic-based parser, the Principle-Ordering Parser (POP) has been
built by Fong to investigate and demonstrate the effects of principle-order-
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ing. The POP was deliberately constructed in a highly modular fashion
to allow for maximum flexibility in exploring alternative orderings of prin-
ciples. For instance, each principle is represented separately as an atomic
parser operation. A structure is deemed to be well-formed only if it passes
all parser operations. The scheduling of parser operations is controlled
by a dynamic ordering mechanism that attempts to eliminate unnecessary
work by eliminating ill-formed structures as quickly as possible. (For com-
parison purposes, the POP also allows the user to turn off the dynamic
ordering mechanism and to parse with a user-specified (fixed) sequence of
operations.)

Although it was designed primarily to explore the computational prop-
erties of principles for building more efficient parsers, this parser is also
designed to be capable of handling a reasonably wide variety of linguis-
tic phenomena. The system faithfully implements most of the principles
contained in Lasnik and Uriagereka [1988]. That is, the parser makes the
same grammaticality judgments and reports the same violations for ill-
formed structures as the reference text. Some additional theory is also
drawn from Chomsky [1981, 1986]. Parser operations implement principles
from Theta Theory, Case Theory, Binding Theory, Locality theory, and the
Empty Category Principle, as described earlier in figure 2.

The principle ordering problem

How important an issue is the principle ordering problem in parsing? An
informal experiment was conducted using the parser described in the pre-
vious section to provide some indication on the magnitude of the problem.
Although we were unable to examine all the possible orderings, it turns
out that order-of-magnitude variations in parsing times could be achieved
merely by picking a few sample orderings.?

Explaining the variation in principle ordering

The variation in parsing times for various principle orderings that was
observed can be explained by assuming that overgeneration is the main

3The parser has about twelve to sixteen modules. Given a set of one dozen
operations, there are about 500 million different ways to order these operations.
Fortunately, only about half a million of these are actually valid, due to logical
dependencies between the various operations. However, this is still far too
many to test exhaustively. Instead, only a few well-chosen orderings were
tested on a number of sentences from the reference. The procedure involved
choosing a default sequence of operations and ‘scrambling’ the sequence by
moving operations as far as possible from their original positions (modulo any
logical dependencies between operations).
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bottleneck for the parser. That is, in the course of parsing a single sen-
tence, a parser will hypothesize many different structures. Most of these
structures, the ill-formed ones in particular, will be accounted for by one or
more linguistic filters. A sentence will be deemed acceptable if there exists
one or more structures that satisfy every applicable filter. Note that even
when parsing grammatical sentences overgeneration will produce ill-formed
structures that need to be ruled out. Given that our goal is to minimize
the amount of work performed during the parsing process, we would expect
a parse using an ordering that requires the parser to perform extra work,
compared with another ordering, to be slower.

Overgeneration implies that we should order principle filters to elim-
inate ill-formed structures as quickly as possible. For these structures,
applying any parser operation other than one that rules it out may be
considered as doing extra, or unnecessary, work (modulo any logical de-
pendencies between principles).

Global optimal ordering is impossible

Because some orderings perform better than others, a natural question to
ask is: Does there exist a globally optimal ordering? The existence of such
an ordering would have important implications for the design of the control
structure of any principle-based parser. The parser has a novel dynamic
control structure in the sense that it tries to determine an ordering-efficient
strategy for every structure generated. If such a globally optimal ordering
could be found, then we can do away with the run-time overhead and parser
machinery associated with calculating individual orderings. That is, we
could build an ordering-efficient parser simply by hardwiring the optimal
ordering into its control structure. Unfortunately, no such ordering can
exist.

It is easy to see why this is so. The impossibility of the globally opti-
mal ordering follows directly from the “eliminate unnecessary work” ethic.
Computationally speaking, an optimal ordering is one that rules out ill-
formed structures at the earliest possible opportunity. A globally optimal
ordering would be one that always ruled out every possible ill-formed struc-
ture without doing any unnecessary work. Consider the following three
structures (taken from Lasnik and Uriagereka [1988]):

(a) *John; is crucial [cp[ip €1 to see this]]
(b)  *[xpJohni’s mother ][yvp likes himself;]
(c) *John; seems that he; likes e;

Example (a) violates the Empty Category Principle (ECP). Hence the op-
timal ordering must invoke the ECP operation before any other operation
that it is not dependent on. On the other hand, example (b) violates a
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Binding Theory principle. Hence, the optimal ordering must also invoke
this principle as early as possible. Given that the two operations are in-
dependent, the optimal ordering must order the binding principle before
the ECP and vice-versa. Similarly, example (c) demands that a variant of
the Case filter must precede the other two operations. Hence a globally
optimal ordering is impossible.

Heuristics for principle ordering

While one cannot achieve a globally optimal ordering, it is still possible
to apply heuristic strategies that often come close. The principle-ordering
problem can be viewed as a limited instance of the well-known conjunct
ordering problem [Smith & Genesereth 1985]. Given a set of conjuncts,
we are interested in finding all solutions that satisfy all the conjuncts si-
multaneously. The parsing problem is then to find well-formed structures
(solutions) that satisfy all the parser operations (conjuncts) simultaneously.
Moreover, we are particularly interested in minimizing the cost of finding
these structures by re-ordering the set of parser operations.

This section outlines some of the heuristics used by Fong’s parser to

determine the minimum cost ordering for a given structure. The parser
contains a dynamic ordering mechanism that attempts to compute a mini-
mum cost ordering for every phrase structure generated during the parsing
process. .
This heuristic mechanism can be subdivided into two distinct phases
which are discussed in turn. First, the dynamic ordering mechanism de-
cides which principle is the most likely candidate for eliminating a given
structure. Then the parser makes use of this information to reorder parser
operation sequences to minimize the total work performed.

Predicting failing filters

Given any structure, the dynamic ordering mechanism attempts to satisfy
the “eliminate unnecessary work” ethic by predicting a “failing” filter for
that structure. More precisely, it will try to predict the principle that a
given structure violates on the basis of the simple structure cues. Because
the ordering mechanism cannot know whether a structure is well-formed or
not, it assumes that all structures are ill-formed and attempts to predict
a failing filter for every structure. In order to minimize the amount of
work involved, the types of cues that the dynamic ordering mechanism can
test for are deliberately limited. Only inexpensive tests such as whether
a category contains certain features are used. Any cues that may require
significant computation, such as searching for an antecedent, are considered

to be too expensive. Each structure cue is then associated with a list of
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possible failing filters. (Some examples of the mapping between cues and
filters are shown in table 3 below.) The system then chooses one of the
possible failing filters based on this mapping. ‘

Structure cue Possible failing filters

trace Empty Category Principle, and
Case Condition on traces
intransitive Case Filter
passive Theta Criterion
Case Filter
non-argument Theta Criterion
~+anaphoric Binding Theory Principle A
+pronominal Binding Theory Principle B

Table 3. Some of the heuristic cues used for testing which filter will block a
given sentence.

The correspondence between each cue and the set of candidate filters may
be systematically derived from the definitions of the relevant principles.
For example, Principle A of the Binding Theory deals with the conditions
under which antecedents for anaphoric items such as each other and himself
must appear. Hence, Principle A can only be a candidate failing filter for
structures that contain an item with the +anaphoric feature. Other cor-
respondences may be somewhat less direct. For example, the Case Filter
merely states that all overt noun phrases must have abstract Case. Now,
in the parser the conditions under which a noun phrase may receive ab-
stract Case are defined by two separate operations, namely, Inherent Case
Assignment and Structural Case Assignment. It turns out that an instance
where Structural Case Assignment will not assign Case is when a verb that
normally assigns Case has passive morphology. Hence, the presence of a
passive verb in a given structure may cause an overt noun phrase to fail to
receive Case during Structural Case Assignment—which in turn may cause
the Case Filter to fail.*

1t is possible to automate the process of finding structure cues simply by in-
specting the closure of the definitions of each filter and all dependent opera-
tions. One method of deriving cues is to collect the negation of all conditions
involving category features. For example, if an operation contains the condi-
tion “not (Item has_feature intransitive)”, then we can take the presence
of an intransitive item as a possible reason for failure of that operation. How-
ever, this approach has the potential problem of generating too many cues.
Although, it may be relatively inexpensive to test each individual cue, a large
number of cues will significantly increase the overhead of the ordering mecha-
nism. Furthermore, it turns out that not all cues are equally useful in predict-
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The failing filter mechanism can be seen as an approximation to the
Cheapest-first heuristic in conjunct ordering problems. It turns out that
if the cheapest conjunct at any given point will reduce the search space
rather than expand it, then it can be shown that the optimal ordering
must contain that conjunct at that point. Obviously, a failing filter is
a “cheapest” operation in the sense that it immediately eliminates one
structure from the set of possible structures under consideration.

Although the dynamic ordering mechanism performs well in many of
the test cases drawn from the reference text, it is by no means foolproof.
There are also many cases where the prediction mechanism triggers an
unprofitable re-ordering of the default order of operations. (We will present
one example of this in the next section.)

Logical dependencies and reordering

Given a candidate failing filter, the dynamic ordering mechanism has to
schedule the sequence of parser operations so that the failing filter is per-
formed as early as possible. Simply moving the failing filter to the front of
the operations queue is not a workable approach for two reasons.

First, simply fronting the failing filter may violate logical dependencies
between various parser operations. For example, suppose the Case Filter
were chosen to be the failing filter. To create the conditions under which
the Case Filter can apply, both Case assignment operations, namely, In-
herent Case Assignment and Structural Case Assignment, must be applied
first. Hence, fronting the Case Filter will also be accompanied by the sub-
sequent fronting of both assignment operations—unless they have already
been applied to the structure in question.

Second, the failing filter approach does not take into account the be-
havior of generator principles. Due to logical dependencies it may be nec-
essary in some situations to invoke a generator operation before a failure
filter can be applied. For example, the filter Principle A of the Binding
Theory is logically dependent on the generator Free Indexing to generate
the possible antecedents for the anaphors in a structure. Consider the pos-
 sible binders for the anaphor himself in John thought that Bill saw himself
as shown below:

ing failure filters. One solution may be to use “weights” to rank the predictive
utility of each cue with respect to each filter. Then an adaptive algorithm
could be used to “learn” the weighting values, in a manner reminiscent of
Samuels [1967]. The failure filter prediction process could then automatically
eliminate testing for relatively unimportant cues. This approach is currently
being investigated.
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(a) *John, thought that Bill; saw himself;
(b) John; thought that Bill; saw himself;
(c) *John; thought that Bill; saw himselfy,

Only in example (b) is the antecedent close enough to satisfy the lo-
cality restrictions imposed by Principle A. Note that Principle A had to
be applied a total of three times in the above example in order to show
that there is only one possible antecedent for himself. This situation arises.
because of the general tendency of generators to overgenerate. But this
characteristic behavior of generators can greatly magnify the extra work
that the parser does when the dynamic ordering mechanism picks the wrong
failing filter. Consider the ill-formed structure *John seems that he likes e
(a violation of the principle that traces of noun phrases cannot receive
Case). If however, Principle B of the Binding Theory is predicted to be the
failure filter (on the basis of the structure cue he), then Principle B will
be applied repeatedly to the possibilities generated by free indexing. On
the other hand, if the Case Condition on Traces operation was correctly
predicted to be the failing filter, then Free Indexing need not be applied
at all. The dynamic ordering mechanism of the parser is designed to be
sensitive to the potential problems caused by selecting a candidate failing
filter that is logically dependent on many generators.

The utility of principle ordering

From Fong’s experiments with the parser we have found that dynamic
principle-ordering can provide a significant improvement over any fixed
ordering. We have found that speed-ups varying from three- or four-fold
to order-of-magnitude improvements are possible in many cases.?

The control structure of the current parser forces linguistic principles
to be applied one at a time. Many other machine architectures are certainly
possible, and will be explored in future research. For example, we could
take advantage of the independence of many principles and apply princi-
ples in parallel whenever possible. However, any improvement in parsing
performance would come at the expense of violating the minimum (unnec-
essary) work ethic. Lazy evaluation of principles is yet another alternative.
However, principle-ordering would still be an important consideration for
efficient processing in this case. Finally, we should also consider principle-
ordering from the viewpoint of scalability. The experience with prototypes
suggests that as the level of sophistication of the parser increases (both in

5Obviously the speed-up obtained will depend on the number of principles
present in the system and the degree of fine-tuning of the failure filter selection
criteria.
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terms of the number and complexity of individual principles), the effect of
principle-ordering also becomes more pronounced.
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