In Proceedings of the Association for Computational
Linguistics (ACL) Annual General Meeting 1985

New Approaches to Parsing Conjunctions Using Prolog

Sandiway Fong
Robert C. Berwick
Acrtificial Intelligence Laboratory

M.I.T.

545 Technology Square
Cambridge MA 02139, U.S.A.

Abstract

Conjunctions are particularly difficult to parse in tra-
ditional, phrase-based granunars. This paper shows how
a different represcntation, not based on tree structures,
markedly improves the parsing problem for conjunctions.
It modifies the union of phrase marker model proposed by
Goodall [1984], where conjunction is considered as the lin-
earizalion of a three-dimensional union of a non-tree based
phrase marker representation. A PROLOG grammar for con-
junctions using this new approach is given. It is far simpler
and more transparent than a recent phrase-based extra-
position parser conjunctions by Dahl and McCord [1934).
Unlike the Dahl and McCord or ATN SYSCONJ approach,
no special trail machinery is needed for conjunction, be-
yond that required for analyzing simple sentences. While
of comparable efficiency, the new approach unifies under a
single analysis a host of relaled constructions: respectively
sentences, right node raising, or gapping. Another advan-
tage is that it is also completely reversible (without cuts),
and therefore can be used to generate sentences.

Introduction

The problem addressed in this paper is to construct
a grammatical device for handling coordination in natural
language that is well founded in linguistic theory and yet
comiputationally attractive. The linguistic theory should
be powerful enough to describe all of the phenomenon in
coordination, but also constrained enough to reject all un-
graminatical examples without undue complications. It is
difficult to achieve such a fine halance - especially since the
term grammatical itsclf is highly subjeclive. Somne exam-
ples of the kinds of phenomenon that snust be handled are
shown in fig. 1
The theory should also be amenable to computer
implementation. For example, the representation of the
phrase marker should be conducive to both clean process
description and efficient implementation of the associated
operations as defined in the linguistic theory.

118

John and Mary went to the pictures
Simple constituent coordination

The fox and the hound lived in the fox hole and

kennel respectively
Coustituent coordination with the ‘respectively’
reading)

John and I like to program in Prolog and Hope
Simple constituent coordination but can have a col-
lective or respectively reading

John likes but | hate bananas

Noun-constituent coordination

Bill designs cars and Jack aeroplanes
Gapping with ‘respectively’ reading

The fox, the hound and the horse all went to market
Multiple conjuncts

*John sang loudly and a carol

Violation of coordination of likes

*Who did Peter see and the car?
Violation of coordinate structure constraint
*| will catch Peter and John might the car

Gapping, but component sentences contain unlike
auxiliary verbs

?The president left before noon and at 2, Gorbachev
Fig 1: Example Sentences

The goal of the computer implementation is to pro-
duce a device that can both generate surface sentences given
a phrase marker representation and derive a phrase marker
representation given a surface sentences. The implementa-
tion should be as efficient as possible whilst preserving the
essential properties of the linguistic theory. We wiil present
an implementation which is transparent to the grammar
and perhaps cleaner & inore modular than other systems
such as the interpreter for the Modifier Structure Gram-
mars (MSGs) of Dahl & McCord [1983].

The MSG system will be compared with a simplified
implementation of the proposed device. A table showing
the exccution time of both systems for some sample sen-

e

1t

[5d

tences will be presented. Furthermore, the advantages and
disadvantages of our device will be discussed in relalion to
the MSG implementation.

Finally we can show how the simplified device can
be extended to deal with the issues of extending the sys-
tem to handle multiple conjuncts and strengthening the
constraints of the system.

The RPM Representation

The phrase marker representation used by the theory
described in the next section is essentially that of the Re-
duced Phrase Marker (RPM) of Lasnik & Kupin [1977]. A
reduced phrase marker can be thought of as a set consist-
ing of monostrings and a terminal string satisfying certain
predicates. More formally, we have (fig. 2) -

Let ¥ and N denote the sel of terminals and
non-terminals respectively.

Let p,1,x € (EUN)*

Let z,y,z € L*.

Let A be a single non-terminal.
Let P be an arbitrary set.

Then p is a monostring w.rt. £ & N if p €
TNT

Suppose p = zAz and that p,4 € P where P
is a some set of strings. We can also define the
following predicates :-

yisa* pin P ifzyz€ P

© dominates ¢ in P if ¥ = zxy. x # @ and
X # A

o precedes 7 in P if Jy s.t. y isa® p in P,
W = zyx and x # 2.

Then :-

P is an RPM if 34,z s.t
V{1, p} C P then

A,z € P and

1 dominates p in P or ¢ dominates % in P
or ¢ precedes p in P or ¢ precedes ¢ in P.

Fig 2: Definition of an RPM

119

This representation of a phrase marker is equiva-
lent to a proper subset of the more common syntactic tree
representation. This means that some trees may not be
representable by an RPM and all RPMs may be re-cast as
trees. (For example, trees with shared nodes representing
overlapping constituents are not allowed.) An example of
a valid RPM is given in fig. 3 :-

Sentence: Alice saw Bill

RPM representation:

{S. Alice.saw.Bill. NP.saw.Bill. Alice.V.Bill,
Alice.VP Alice.saw.NP}

Fig 3: An example of RPM representation

This RPM representation foris the basis of the
linguistic theory described in the next section. The set
representation has some desirable advantages over a tree
representation in terms of both simplicity of description
and implementation of the operations.

Goodall’s Theory of Coordination

Goodall’s idea in his draft thesis [Goodall??] was to
extend the definition of Lasnik and Kupin’s RPM to cover
coordination. The main idea behind this theory is to ap-
ply the notion that coordination results from the union of
phrase markers to the reduced phrase marker. Since RPMs
are scts, this has the desirable property that the union of
RPMs would just be the familiar set union operation. For
a computer implementation, the set union operation can be
realized inexpensively. In contrast, the corresponding op-
eration for trees would necessitate a much less simple and
efficient union operation than set union.

However, the original definition of the RPM did
not envisage the union operation necessary “for coordina-
tion. The RPM was used to represent 2-dimensional struc-
ture only. But under set union the RPM becomes a rep-
resentation of 3-dimensional structure. The admissibility
predicates dominates and precedes defined on a set of
monostrings with a single non-terminal string were inade-
quate to describe 3-dimensional structure.

Basically, Goodall’s original idea was to extend the
dominates and precedes predicates to handle RPMs un-
der the set union operation. This resulted in the relations
e-dominates and e-precedes as shown in fig. 4 :-

i
|
)
|
'f
¥
i
|
|
|

Assuming the definitions of fig. 2 and in addition
let w,0,0 € (EUN)* and q,r,s,t,v € £*, then
e-dominates 1 in P if ¢ dominates %' in
P.oxzw=19'" Oyl=vandz=yin P.

© e-precedes ¢ in P if y isa* p in P, v isa*
Y in P, qyr = svtin P, y # qyr and v # svt

where the relation = (terminal equivalence) is
defined as :-
z=yin P if xzwe P and xyw € P

Figure 4: Extended definitions

This extended definition, in particular - the notion
of equivalence forms the basis of the computational device
described in the next section. However since the size of the
RPM may be large, a direct impleinentation of the above
definition of equivalence is not computationally feasible. In
the actnal systein, an optimized but equivalent alternative
definition is used.

Although these definitions suffice for most examples
of coordination, it is not sufficiently constrained enough to
reject some ungrammatical examples. For example, fig. 5
gives the RPM rcpresentation of “*John sang loudly and
a carol” in terms of the union of the RPMs for the two
constituent sentences :-

{John.sang.loudly, S,
John.V.loudly, John.VP,
John.sang AP,
NP.sang.loudly}

John sang loudly

{John.sang.a.carol, S,
John.V.a.carol, John.VP,
John.sang.NP,

NP .sang.a.carol}

John sang a carol

(When these two RPMs are merged some of the clements
of the set do not satisty Lasnik & Kupin’s original defi-
nition - these pairs are :-)

{John_sang loudly, John sang.a.carol}
{John.V loudly. John.V.a.carol}
{NP.sang.loudly, NP.sang.a.carol}

(None of the above pairs satisfy the e-dominates predi-
cate - but they all satisfy e-precedes and hence the sen-
lence is accepted as an RIPM.)

Fig.5: An example of union of RPMs

120

The above example indicates that the extended RPM
definition of Goodall allows some ungrammatical sentences
to slip through. Although the device presented in the next
section doesn’t make direct use of the extended definitions,
the notion of equivalence is central to the implementation.
The basic system described in the next section does have
this deficiency but a less simplistic version described later
is more constrained - at the cost of some computational
efficiency.

Linearization and Equivalence

Although a theory of coordination has been described
in the previous sections - in order for the theory to be put
into practice, there remain two important questions to be
answered :-

¢ How to produce surface strings from a set of sentences
to be conjoined?

e How to produce a set of simple sentences (i.e. sen-
tences without conjunctions) from a conjoined surface
string?

This section will show that the processes of lin-
earization and finding equivalences provide an answer to
both questions. For simplicity in the following discussion,
we assume that the number of simple sentences to be con-
joined is two only.

The processes of linearization and finding equiva-
lences for generation can be defined as :-

Given a set of sentences and a set of candidates
which represent the set of conjcinable pairs for
those sentences, linearization will output one or
more surface strings according to a fixed proce-
dure.

Given a set of sentences, finding equivalences
will produce a set of conjoinable pairs according
to the definition of equivalence of the linguistic
theory.

For generation the second process (finding equiva-
lences) is called first to generate a set of candidates which
is then used in the first process (linearization) to generate
the surface strings. For parsing, the definitions still hold -

but the processes are applied in reverse order.

To illustrate the procedure for lincarization, con-
sider the following example of a set of simple sentences

(Gg. 6) =- ’

R TR R M

A

Y R

RPN 3 o Sy ™, . gy 0, Y e BN i WIS N LAY,

T e

{ John liked ice-cream, Mary liked chocolate}

set of simple sentences

{{John, Mary}, {ice-cream. chocolate}}
set of conjoinable pairs

Fig 6: Example of a set of simple sentences

Consider the plan view of the 3-dimensional repre-
sentation of the union of the two simple sentences shown in
fig. 7 :-

John ice-cream
\

™~

T liked <
i / "

~.chocolate

Fig 7: Exanmiple of 3-dimensional structure

The procedure of linearization would take the fol-
lowing path shown by the arrows in fig. 8 :-

John ice-cream

~ /-
<

Mary ~~.chocolate

Fig 8: Example of linearization

TFollowing the path shown we obtain the surface
string “John and Mary liked ice-cream and chocolate” ..

The sct of conjoinable pairs is produced by the pro-
cess of finding equivalences. The definition of equivalence
as given in the description of the extended RPM requires
the generation of the combined RPM of the constituent sen-
tences. However it can be shown [Fong??] by considering
the constraints imposed by the definitions of equivalence
and linearization, that the same set of equivalent terminal
strings can be produced just by nsing the terminal strings of
the RI’M alone. There are considerable savings of compu-

121

tational resources in not having to compare every element
of the set with every other element to generate all possible
equivalent strings - which would take O(n?) time - where
n is the cardinality of the set. The corresponding term for
the modified definition (given in the next section) is O(1).

The Implementation in Prolog

This section describes a runnable specification written
in Prolog. The specification described also forms the basis
for comparison with the MSG interpreter of Dah! and Mec-
Cord. The syntax of the clauses to be presented is similar
to the Dec-10 Prolog [Bowen et al.1982] version. The main
differences are :-

» The symbols “-” and “” have been replaced by the
more meaningful reserved words “if’ and “and” re-

spectively.
1 “7 is used as the list constructor and
“ril” is used to represent the empty list.

e The symbo

e An an example, a Prolog clause may have the form :-

a(XY .. 2) if b(UV.. W)and ¢(R S ... T)

where a,b & c are predicate names and R,S,...,% may
(Variables
are distinguished by capitalization of the first charac-
ter in the variable name.) The intended logical read-
ing of the clause is :-

represent variables, constants or terms.

“a” holds if “b” and “c” both hold
for consistent bindings of -the arguments

X,Y,..,2, UV,.,W, R,S,..,T

s Comments (shown in italics) may be interspersed be-
tween the arguments in a clause.

Parse and Generate

In the previous section the processes of linearization
and finding equivalences are.described as the two compo-
nents necessary for parsing and generating conjoined sen-
tences. We will show how these processes can be combined
to produce a parser and a generator. The device used for
comparison with Dahl & McCord scheme is a simplified
version of the device presented in this section.

First, difference lists are used to represent strings
in the following sections. For example, the pair (fig. 9) :-

{ john.liked.ice-cream. Coutinuation. Continuation}

Fig 9: Examnple of a difference list

is a difference list representation of the sentence “John
liked ice-cream”.

We can now introduce two predicates linearize and
equivalentpairs which correspond to the processes of lin-
earization and finding equivalences respectively (fig. 10) -

linearize(pairs S1 E1 and S2 E2 candidates Set
gives Sentence) ‘

Linearize holds when a pair of difference lists
({S1. E1} & {S2. E2}) and a set ol candidates
(Set) are consistent with the string (Sentence)
as defined by the procedure given in the previ-
ous section.

equivalentpairs(X Y from S1 S2)

Equivalentpairs holds when a substring X of
S1 is equivalent to a substring Y of S2 according
to the definition of equivalence in the linguistic
theory.

Fig 10: Predicates linearize & equivalentpairs

Additionally, let the mecta-logical predicate setof
as in “sclof(Element Goal Set)” hold when Set is composed
of elements of the form Element and that Set contains all
instances of Element that satisfy the goal Goal. The pred-
icates generate can now be defined in terms of these two
processes as follows (fig. 11) =

generate(Sentence from S1 S2)
if setof(X.Y.nil n equivalentpairs(X Y
from S1 S2) is Set)
andlincarize(pairs S1 nil and S2 nil
) candidates Set gives Sentence)

parsc{ Sentence giving S1 E1)
if lnearize(pairs S1 E1 and S2 E2
candidates SubSet gives Sentence)
andsetof(X.Y.nil in equivalentpairs(X Y
from S1 52) is Set)

Fig 11: Prolog definition for generate & parse

122

The definitions for parsing and generating are al-
most logically equivalent. Tlowever the sub-goals for pars-
ing are in reverse order to the sub-goals for generating -
since the Prolog interpreter would attempt to solve the
sub-goals in a left to right manner. Furthermore, the sub-
set relation rather than set equality is used in the deflinition

for parsing. We can interpret the two definitions as follows
(Gg. 12) :-

Generate holds when Sentence is the con-
Jjoincd sentence resulting from the linearization
of the pair of difference lists (S1, nil) and (S2.
nil) using as candidate pairs for conjoining, the
set of non-redundant pairs of equivalent termi-
nal strings (Set).

Parse holds when Sentence is the conjoined
sentence resulting from the linearization of the
pair of difference lists (S1. E1) and (S2. E2)
provided that the set of candidate pairs for con-
joining (Subset) is a subset of the set of pairs
of equivalent terminal strings (Set).

Fig 12: Logical reading for generate & parse

The subset relation is necded for the above defini-
tion of parsing because it can be shown [Fong??] that the
process of linearization is more constrained (in terms of the
permissible conjoinable pairs) than the process of finding
equivalences.

Linearize

We can also fashion a logic specification for the process
of linearization in the same manner. In this section we
will describe the cases corresponding to each Prolog clause
necessary in the specification of linearization. However, for

“simplicity the actual Prolog code is not shown here. (See

Appendix A for the definition of predicate linearize.)

In the following discussion we assume-that the tem-
plate for predicate linearize has the form “lincarize(pairs
S1 E1 and S2 E2 candidates Set gives Sentence)™ shown
previously in fig. 10. There are three independent cases to
consider during linearization :-

1. The Base Case.
If the two difference lists ({51, E1} & {52, E2}) are
both empty then the conjoined string (Sentence) is
also empty. This simply states that if two cmpty
strings arc conjoined then the result is also an empty
string.

S —

2. Identical Leading Substrings.
The second case occurs when the two (non-empty)
difference lists have identical leading non-empty sub-
strings. Then the conjoined string is identical to the
concatenation of that leading substring with the lin-
carization of the rest of the two difference lists. For
example, consider the linearization of the two frag-
ments “likes Mary” and “likes Jill” as shown in fig. 13

{likes Mary. likes Jill}

which can be linearized as ;-

{likes X}
where X is the linearization
of strings {Mary, lJill}

Fig.13: Example of identical leading substrings

3. Conjoining.

The last case occurs when the two pairs of (non-
empty) difference lists have no common leading sub-
string. Here, the conjoined string will be the con-
catenation of the conjunction of one of the pairs from
the candidate set, with the conjoined string resulting
from the linearization of the two strings with their re-
spective candidate substrings deleted. TFor example,
consider the linearization of the two sentences “John
likes Mary” and “Bill likes Jill” as shown in fig. 14 :-

{John likes Mary, Bill likes Jill}

Gruen that the selected candidate pair is {John, Bill},
the conjoined sentence would be -

{John and Bill X}
where X
is the linearization of strings {likes Mary. likes Jill}

Fig.14: Exanple of conjoining substrings

There are some implementation details that are dif-
ferent fer parsing to generating. (See appendix A.) However
the three cases are the same for both.

We can illustrate the above definition by showing

123

what [inearizations the system would produce for an ex-
ample sentence. Consider the sentence “John and Bill liked

Mary” (fig. 15) :-

{John and Bill liked Mary}
would produce the strings:-

{John and Bill liked Mary.
John and Bill liked Mary}
with candidate set {}

{ John liked Mary, Bill liked Mary}
with candidate set {(John, Bill)}

{John Mary, Bill liked Mary}
with candidate set {{John, Bill liked)}

{John. Bill liked Mary} »
with candidate set {(John, Bill liked Mary)}

I'ig.15: Example of linearizations

All of the strings ave then passed to the predicate
findequivalences which should pick out the second pair
of strings as the only grammatically correct linearization.

IFinding Equivalences

Goodall's definition of equivalence was that two termi-
nal strings were said to be equivalent if they had the same
left and right contexts. Furthermore we had previously as-
serted that the equivalent pairs could be produced without
searching the whole RPM. TFor example consider the equiv-
alent terminal strings in the two sentences “Alice saw Bill”
and “Mary saw Bill” (fig. 16) :-

{Alice saw Bill, Mary saw Bill}
would procuce the equivalent pairs :-

{Alice saw Bill. Mary saw Bill}
{Alice. Mary}

{Alice saw, Mary saw}

Fig.16: Example of equivalent pairs

We also make the following restrictions on Goodall’s
definition :-

o If there exists two terminal strings X & Y such that
X=xxQ0 & Y=xyQ, then X & (1 shonld be the strongest
possible left & right contexts respectively - provided
x & y are both nonempty. In the above example,
x=nil and Q=“saw Bill”, so the first and the third
pairs produced are redundant.

In general, a pair of terminal strings are redundant
if they have the form (uv, uw) or (uv, zv), in which
case - they may be replaced by the pairs (v, w) and
(u, z) respectively.

o In Goodall’s definition aay two terminal strings them-
selves are also a pair of equivalent terminal strings
(when x & Q are both null). We exclude this case as
it produces simple string concatenation of sentences.

The above restrictions imply that in fig. 16 the only
remaining equivalent pair ({Alice, Mary})is the correct one
for this example.

However, Lefore finding equivalent pairs for two
simple sentences, the process of finding equivalences must
check that the two sentences arc actually grammatical. We
assume that a recognizer/parser (c.g. a predicate parse(S
L)) already exists for determining the grammaticality of
simple sentences. Since the process only requires a yes/no
answer to grammalicality, any parsing or recognition sys-
tem for simple sentences can be used.

We can now specify a predicate ﬁndcandidates(x Y
51 52) that holds when {X, Y} is an equivalent pair from
the two grammatical simple sentences {S1. S2} as follows
(fig. 17) -

findcandidates(X and Y in S1 and S2)
if parse(S1 nil)

and parse(S2 nil)

and equiv(X Y S1 S2)

where equiv is defined ay :-

equiv(X Y X1 Y1)

if append3(Chi X Omega X1)

and terminals(X)

and append3(Chi Y Omega Y1)

and terminals(Y)
where append3(L1 L2 L3 L4) holds when Ld is equal
to the concatenation of L1,L2 & L3, terminals(X)
holds when X is a list of terminal symbols only

Fig.17: Logic definition of Findcandidates

Then the predicate findequivalences is simply de-
fined as (Gg. 18) :-

124

findequivalences(X and Y in S1 and S2)
if findcandidates(X and Y in S1 and S2)
and not redundant(X Y)

where redundant implements the two restrictions described .

Fig.18: Logic definition of Findequivalences

Comparison with MSGs

The following table (fig. 19) gives the execution times
in milliseconds for the parsing of some sample sentences
mostly taken from Dahl & McCord [1983]. Both systems
were exccuted using Dec-20 Prolog. The times shown for
the MSG interpreter is based on the time taken to parse and
build the syntactic tree only - the tiine for the subsequent
transformations was not included.

Sainple MSG | RPM
sentences system | device
Each man ate an apple and a pear 662 292
John ate an apple and a pear 613 233
A man and a woman saw each train 319 506
Lach man and each woman ate 320 503

an apple

John saw and the woman heard 788 834
a man that laughed

John drove the car through and . 275 1032
completely demolished a window

The woman who gave a book to 1007 3375

John and drove a car through a
window laughed

John saw the man that Mary saw 439 311
and Bill gave a book to laughed

John saw the man that heard the 636 323
woman that langhed and saw Bill

The man that Mary saw and heard 501 982
gave an apple to each woman

John saw a and Mary saw the red 726 770
pear

Fig.18: Timings for some sample sentences

From the timings we can conclude that the pro-
posed device is comparable to the MSG system in terms
of computational efficiency. However, there are some other
advantages such as :-

e Transparency of the grammar - There is no need for
phrasal rules such as “S — S.and $”. The device also
allows non-phrasal conjunction.

e Since no special grammar or particular phrase marker
representation is required, any parser can be used -
the device only requires an accept/reject answer.

e The specification is not biased with respect to pars-
ing or generation. The implementation is reversible
allowing it to generate any sentence it can parse and
vice versa.

Modularity of the device. The grammaticality of sen-
tences with conjunction is determined by the defini-
tion of equivalence. For instance, if needed we can
filter the equivalent terminals using semantics.

A Note on SYSCONJ

1t is worthwhile to compare the phrase marker approach
to the ATN-based SYSCONJ mechanism. Like SYSCONIJ, our
analysis is extragrammatical: we do not tamper with the
basic grammar, but add a new component that handles
conjunction. Unlike SYSCONJ, our approach is based on a
precise definition of “equivalent phrases” thal attempts to
“unify under one analysis many different types of coordina-
tion phenomena. SYSCONJ rclied on a rather complicated,
interrupt-driven method that restarted sentence analysis in
sone previously recorded machine configuration, but with
the input sequence following the conjunction.
tures part of the “multiple planes” analysis of the phrase

This cap-

marker approach, but without a precise notion of equiva-
lent- phrases. Perhaps as a result, SYSCONJ handled only
ordinary conjunction, and not respectively or gapping read-
ings. In our approach, a simple change to the linearization
process allows us te handle gapping.

Extensions to the Basic Device

The device described in the previous section is a sim-
plified version for rough comparison with the MSG inter-
preter. However, the system can easily be gencralized to
handle multiple conjuncts. The only additional phase re-
quired is to generate templates for multiple readings. Also,
gapping can be handled just by adding clauses to the defi-
nition of linearize - which allows a different path from that
ol fig. 8 to be taken.

The simplified device permits some examples of un-
grammatical sentences to be parsed as if corrcet (fig. 5).
The modularity of the system allows us to constrain the
delinition of equivalence still further. The extended defini-
tions in Goodall’s draft theory were not included in his the-
sis [Goodall84] presumably because it was not constrained
enough. However in his thesis he proposes another defini-
tion of grammaticality using RPMs. This definition can be
used to constrain cquivalence still further in our system at
a loss of some efliciency and generality. [or example, the
required additional predicate will need to make explicit use

125

of the combined RPM. Therefore, a parser will need to pro-
duce a RI’M representation as its phrase marker. The mod-
ifications necessary to produce the representation is shown
in appendix B.

Acknowledgements

This work describes research done at the Artificial Intel-
ligence Laboratory of the Massachusetts Institute of Tech-
nology. Support for the Laboratory’s artificial intelligence
research has been provided in part by the Advanced Re-
search Projects Agency of the Department of Defense un-
der Office of Naval Research contract N00014-80-C-0505.
The first author is also funded by a scholarship from the
Kennedy Memorial Trust.

References

Bowen et al: D.L. Bowen (ed.), L. Byrd, F.C.N. Percira, L.M.
Pereira, D.H.D. Warren. Decsystem-10 Prolog User’s Man-
ual. University of Edinburgh. 1982.

Dahl 8 McCord: V. Dahl and M.C. McCord. Treating Coordi-
nation in Logic Grammars. American Journal of Compu-
tational Linguistics. Vol. 9, No. 2 (1983).

Fong??: Sandiway Fong. To appear in S.M. thesis - “Specifying
Coordination in Logic” - 1985

Goodull??: Grant Todd Goodall. Draft - Chapter 2 (sections 2.1.
to 2.7)- Coordination.

Goodull8§: Grant Todd Goodall. Parallel Structures in Syntax. '
Ph.D thesis. University of California, San Diego (1984).

Lasnik & Kupin: II. Lasnik and J. Kupin. A restrictive theory
of transformational grammnar.
(1977).

Theoretical Linguistics 4

Appendix A: Linearization

The full Prolog specification for the predicate linearize is
given below.

/ Linearize for yeneration /
/ terminating condition /
lincarize(pairs S1 S1 and 82 S2
candidates List giving nil) if nonvar(List)
/ applicable when we have a common substring /
lincarize(pairs S1 Ll and S2 2
cundidates List giving Sentence)
if var(Sentence)
and not same(S1 as E1)
and not samc(52 as E2)

and similar(S1 to S2 common Similar)
and not same(Similar as nil)
and remove(Similar from S1 leaving NewS1)
and remove(Similar fromn S2 leaving NewS2)
and linearize(pairs NewS1 Tl und NewS2 E2
candidates List giving RestOfSentence)
and append(Similar RestOfSentence Sentence)
/ conjoin two substrings /
lincarize(pairs S1 L1 and S2 E2
candidates List giving Scntence)
if var(Sentence)
and member(Cand1.Cand2.nil of List)
and not same(S1 as E1)
and not same(S2 as E2)
and remove(Candl from S1 leaving NewS1)
and remove(Cand2 from S2 leaving NewS2)
and conjoin(list Candl.Cand2.nil using ’and’
giving Conjoined)
and delete(Cand1.Cand2.nil from List leaving NewList)
and lincarize(pairs NewS1 E1 and NewS2 E2
candidates NewList giving RestofSentence)
and append(Conjoined RestofSentence Sentence)

/ Linearize for parsing /
/ Terminating case /

lincarize(pairs nil nil end nil nil
candidates List giving nil)

if var(List)

and same(List as nil)

/ Cuse for common substring /

lincarize(pairs Common.NewS1 nil and Common.NewS2 nil
candidates List giving Scntence)
if nonvar(Sentence)
and same(Common.RestOfSentcuce as Sentence)
and lincarize(pairs NewS1 nil and NewS2 nil
candidates List giving RestOfSentence)

/ Case for conjoin /
lincarize(pairs S1 nil and $2 nil
candidates Element.Rest giving Sentence)

if nonvar(Sentence)
and append*(Canjoined to RestOf3entence giving Sentence)
and conjoin(list Tlement. using *and’ giving Conjoined)
and same(filement as Candl.Cand2.nil)
and not samc(Candl as nil)
and not same(Cand2 us nil)
and lincarize(peirs NewS1 nil and NewS§2 nil

candidutes Rest giving RestOfSentence)
and append(€andt NewSL S1)
and append(Cand2 NewS2 52)
/ append* is w special form of append such that
the first list must be non-cmpty
append ™ (Ilead.nil to Tail giving Head.Tail)
append*(First.Second.Others to Tail.giving Tirst.Rest)
if append™(Second.Others to Tail giving Rest)
similar(nilto nil common nil)
similar (Ieadl. Taill to Head2.Tail2 common hil)
if not siume(Headl as Head?2) .
stmilar (Head. Taill to Head.Tail2 common Head.Rest)
if similar(Taill to Tail2 common Rest)

126

/ conjoin is reversible /

conjoin(list TFirst.Second.nil using Conjunct giving Conjoined)
if nonvar(First)

and nonvar(Second)

and append({First Conjunct.Second Conjoined)

conjoin(list First.Second.nil using Conjunct giving Conjoined)
if nonvar(Conjoined)

and append(First Conjunct.Second Conjoined)

remove(nilfrom List leaving List)
remove(Head. Tail from Head.Rest leaving List)
if remove(Tail from Rest leaving List)
delete(Head from nil leaving nil)

delete(Head from Head. Tail leaving Tail)
delete(Head from First.Rest leaving Tirst.Tail)
if not same(Head as First)

and delete(Head from Rest leaving Tail)

Appendix B: Building the RPM

A RPM representation can be built by adding three extra
parameters to cach grammar rule together with a call to a con-
catenation rontine. For example, consider the verb phrase “liked
Mary” from the simple senience “John liked Mary”. The monos-
tring correspouding to the non-terminal VP is constructed by
taking the left and right coutexts of “liked Mary and placing the
non-terminal symbol VP inbelween them. In gencral, we have
something of the form :-

phrase(from Pointl to Point2
using Start to End giving MS.RPM)
if isphrase(Point1 to Point2 RPM)
and buildmonostring(Start Point1 plus "VP’
Point2 End MS)

where difference pairs {Start, Pointl}, {Point2, End} and
{Start, End} represent the loft context, the right context and the
sentence string respectively. The concatenation routine build-
monostring is just :-

buildmonostring(Start Point1 plus NonTerminal
Point2 End MS)

if append(Point1 Left Start)

and append(Point2 Right End)

and append(Left NonTerminal.Right MS)

