Computational Intelligence
696i
Language
Lecture 4
Sandiway Fong
Administriva

• Homework 1 out today
 – reviewed in class today
 • so ask clarification questions!
 – due one week from today
 – submit to sandiway@email.arizona.edu
Last Time

– we talked about the paradigm shift from “rule-based” systems to the principles-and-parameters (P&P) framework
– the idea that we have UG, a system with some amount of pre-wiring + learning mechanism (including parameter setting)
Principles-and-Parameters

a system of interacting sub-modules
Today’s Lecture

• goal is to get you familiarized with PAPPI, a principles-and-parameters (P&P) parser
 – representing one possible instantiation of UG
 – universal part
 • a set of 20–30 principles
 – language-particular part
 • parameters settings instantiated for SVO, SOV, V2 languages
 • small lexicons for a certain number of languages
 – Turkish, Hungarian, Chinese, Japanese, Dutch, German, French, Spanish, Bangla, English
 – system is a parser only
 • there is no learning mechanism
Today’s Lecture

• Gotta get through 3 things today...
 1. explain the demo
 2. do one exercise
 3. present the homework

• Reading (optional) for discussion next time:
 – latest thinking on language and linguistic theory
 – download and read 1st 5–6 pages of
 – On Phases by N. Chomsky (m.s. 2005)
 – http://dingo.sbs.arizona.edu/~sandiway/mpp/onphases.pdf
Part (1)
Demo

• description available on webpage
 – http://dingo.sbs.arizona.edu/~sandiway/pappi/macosx/index.html#test

• example of how UG might be instantiated
 – one set of principles
 – three languages
 • English: SVO
 • Japanese: SOV
 • Dutch: V2-language
 – verb is 2nd phrase (roughly resembles SVO),
 – but in embedded clauses verb comes last (SOV)
Demo: English

- Example:
 - Which report did you file without reading?

- Word Order:
 - SVO

- Structure:
 - Which report did you file [the report] without [you] reading [the report]?

- Notes:
 - NP indicates noun phrase e-element
 - trace indicated by t
 - indices, e.g. [1], are used for coindexation
Parsing: which report did you file without reading

One parse found
Demo: English

• Example:
 – *Who does Mary wonder why John hit?*
• Ungrammatical
 – violates principle of subjacency
 • can’t displace too far in one hop
• However, you can still recover the meaning...
 – so it’s (considered) a mild violation
• Underlying structure:
 – Mary wonders why John hit **who**
 – **Who** does Mary wonders why John hit **trace**
• Explanation:
 – interaction with X’-theory:
 – *no intermediate position available as a landing site*
 – *cf. Who does Mary think John hit?*
Subjacency not active.

Parsing: who does Mary wonder why John hit

LF (1):

One parse found
Demo: English
Demo: Japanese

- Example:
 - neko-ga *koroshita* nezumi-ga *tabela* tiizu-wa *kusatte ita*
 - cat-NOM killed rat-NOM ate cheese-TOP rotten was
 - the cheese the rat the cat killed ate was rotten

- Word Order:
 - SOV

- Center-embedding (English)
 - [the cheese [the rat [the cat killed] ate] was rotten]
 - *resource limitation*

- Left-embedding (Japanese)
 - [cat killed] [rat ate] [cheese was rotten]
 - *no resource limitation*
Demo:
Japanese
Demo: Japanese

Parsing: the cheese the rat the cat killed ate was rotten

One parse found
Demo: Dutch

• Example:
 – Ik **weet** dat Hanneke haar oma **bezocht**
 – I know that Hanneke her grandma visited
 – *I know that Hanneke visited her Grandma*

• V2 word order:
 – [S Ik **weet** [S dat Hanneke haar oma **bezocht**]]

• Pronoun binding ambiguity
 – **whose grandma**?
 – same ambiguity in Dutch as in English
 – determined by the rules of pronoun binding
Demo: Dutch

Parsing: ik weet dat Hanneke haar oma bezocht
LF (1):

[C2
 [NP[1] ik
 C
 C
 I(AGR)[1] NPt-A-P[1] I1
 VP I(AGR)t[1]
 C
 weet C2 Vt[2]
 [NP[3] hanneke
 N1 oma
 bezocht
 I(AGR)[1] V[2]
 I(AGR)[1]
 C
 dat
 I2]
 I2]}
 I2]}

[3] ≠ [5]
Part (2)
Using PAPPI

• description available on
 – *Introduction to the Theory of PAPPI*
 http://dingo.sbs.arizona.edu/~sandiway/pappi/mac
 osx/pgap.html

• how to use PAPPI to see what UG is doing
 – you will do a very similar exercise for homework 1

• let’s look at the parasitic gap sentence again
 • which report did you file without reading?
 – and look at Move-alpha (*displacement property*)
Using PAPPI

• Example:
 • which report did you file without reading?
• Move-alpha \((\text{displacement property})\)
 – you filed which report without reading
 – which report did you file \(trace\) without reading
• Why isn’t it?
 – you filed without reading \(\text{which report}\)
 – which report did you file \(trace\) without reading \(trace\)
• Why isn’t it?
 – you filed without reading \(\text{which report}\)
 – which report did you file without reading \(trace\)
• What rules out these derivation?
 – \(\text{PAPPI considers all possible derivations}\)
PAPPI: Computation

think of derivations running a gauntlet of constraints and only the grammatical ones make it
PAPPI: Computation

- 47 structures
- 1 admitted
- 46 ruled out
- including
 - which report did you file *trace* without reading *trace*
 - which report did you file without reading *trace*
PAPPI: Computation

• Why isn’t it?
 – you filed without reading
 which report
 – which report did you file
 trace without reading
 trace

• This is tree #8 out of 47
 – look at the chain feature
 – chain(NP[1], Type, Path)
 • Type = {head, medial, last}
 • Path = list of
 intermediate nodes to
 antecedent
PAPPI: Computation

- **Idea:**
- isolate tree #8
- and see what blocks it
PAPPI: *Computation*

- What blocks a derivation?
 - a principle that when turned off allows a parse to be generated
 - [this is not necessarily the same as the stopping principle reported by the parser]

- Let’s test this on #8...
 - Case Condition on Traces (*reported*)
 - Theta Criterion
Part (3)
Homework 1

• Minimal Pair:
 – (1) a. John is too stubborn to talk to
 – b. John is too stubborn to talk to Bill

• It’s an interesting example:
 – just adding one word Bill provokes a big change in gap-filling

• PAPPI parses:

• Readings:
 – (3) a. John is too stubborn for some arbitrary person to talk to John
 – b. John is too stubborn for John to talk to Bill
Homework 1

• Question 1: 2pts (giveaway)
 – how many structures did it consider for each sentence?

• Question 2: (6pts)
 – Consider the sentence:
 • (4) John is too stubborn [for John] to talk to himself
 • PAPPI parses both versions of this sentence
 • why is this interpretation unavailable for (1a)?
 – what principle(s) rules it out?
 – your answer should report which parse numbers and the steps required to
 drill down to the answer

• Question 3: (4 pts)
 – Think of another example of a minimal pair where the interpretation of a
gap in terms of reference must change when a noun (or preposition+noun)
is added