LING 388: Language and Computers

Sandiway Fong
Lecture 5
Administrivia

• **Reminder**
 – Homework 2: due this Wednesday by midnight
 • email: Ben Martin bamartin@email.arizona.edu

• Today’s Topic:
 – Recursion (Chapter 3 of learnprolognow.org)
Prolog online resources

- Some background in logic or programming?
- Useful Online Tutorials

 - Learn Prolog Now!
 - Patrick Blackburn, Johan Bos & Kristina Striegnitz
 - http://www.learnprolognow.org

 - An introduction to Prolog
 - Michel Loiseleur & Nicolas Vigier
 - http://boklm.eu/prolog/page_0.html
Chapter 2
Unification and Proof Search

This chapter has two main goals:

1. To discuss unification in Prolog, and to explain along the way, we'll introduce =/2, the built-in predicate for standard equality.
2. To explain the search strategy Prolog uses: modus ponens.

2.1 Unification
 Examples
 The occurs check
 Programming with unification
2.2 Proof Search
2.3 Exercises
2.4 Practical Session

Chapter 3
Recursion

This chapter has two main goals:

1. To introduce recursive definitions in Prolog.
2. To show that there can be mismatches between procedural meaning.
3.1 Recursive Definitions
 Example 1: Eating
 Example 2: Descendant
 Example 3: Successor
 Example 4: Addition
3.2 Rule Ordering, Goal Ordering, and Termination
3.3 Exercises
3.4 Practical Session
Recursion

• Recursive definition:
 – (informal) something is defined in terms of itself
 – Circular: *musicality*
 – Recursive:
 • repeated application of the same rule to subparts
 – Example (factorial):
 • 0! = 1
 • n! = n * (n-1)! for n>0
Recursion

• Example (length of a list):
 – length of [] = 0
 – length of [X,...] is 1 + length of [...]
 – length of [1,2,3]
 1. = 1 + length of [2,3]
 2. = 1 + 1 + length of [3]
 3. = 1 + 1 + 1 + length of []
 4. = 1 + 1 + 1 + 0
 5. = 3
Recursion

• Example (length of a list):
 – length of [] = 0
 – length of [X,...] is 1 + length of [...]

• In Prolog:
 – length_of([],0).
 – length_of([X|L],N) :- length(L,M), N is M+1.

• Prolog built-in:
 – X is <math expression>
Recursion

• Example (factorial):
 – 0! = 1
 – n! = n * (n-1)! for n>0

• In Prolog:
 – factorial(0,1).
 – factorial(N,NF) :- M is N-1, factorial(M,MF), NF is N * MF.

• Problem: *infinite loop*

• Fix: 2nd case only applies to numbers > 0
 factorial(N,NF) :- N>0, M is N-1, factorial(M,MF), NF is N * MF.
Recursion

• **Example 1: Eating**
 • Consider the following knowledge base:
 is_digesting(X,Y) :- just_ate(X,Y).
 is_digesting(X,Y) :-
 just_ate(X,Z),
 is_digesting(Z,Y).

 just_ate(mosquito,blood(john)).
 just_ate(frog,mosquito).
 just_ate(stork,frog).

• **Query:**
 ?- is_digesting(stork,mosquito).
Recursion

• **Example 2: Descendant**
 child(anne,bridget).
 child(bridget,caroline).
 child(caroline,donna).
 child(donna,emily).
 descend(X,Y) :- child(X,Y).
 descend(X,Y) :- child(X,Z), descend(Z,Y).

• **Query:**
 ?- descend(anne,donna).
Recursion

• **Example 3: Successor**
 – 0 is a numeral.
 – If X is a numeral, then so is succ(X) “successor of”

• **In Prolog:**
 – numeral(0).
 – numeral(succ(X)) :- numeral(X).

• **Query:**
 ?- numeral(succ(succ(0))).

• **Query:**
 ?- numeral(N).
Recursion

• **Addition:**
 - $0 + X = X$
 - $X + Y = 1 + (X-1 + Y)$

• **Example:**
 1. $3 + 2$
 2. $= 1 + (2 + 2)$
 3. $= 1 + (1 + (1 + 2))$
 4. $= 1 + (1 + (1 + (0 + 2)))$
 5. $= 1 + (1 + (1 + 2))$
 6. $= 1 + (1 + 3)$
 7. $= 1 + 4$
 8. $= 5$

```prolog
add(0, Y, Y).
add(succ(X), Y, succ(Z)) :-
    add(X, Y, Z).
```
Goal Ordering

• **Example 2: Descendant**
 child(anne,bridget).
 child(bridget,caroline).
 child(caroline,donna).
 child(donna,emily).
 descend(X,Y) :- child(X,Y).
 descend(X,Y) :- child(X,Z), descend(Z,Y).

• **Swap the conjunctive definition order:**
 descend(X,Y) :- descend(Z,Y), child(X,Z).

• **Query:**
 ?- descend(anne,donna).

- Prolog procedural order: left to right