LING 388: Language and Computers

Sandiway Fong
Lecture 18
Administrivia

• Next week, Ben Martin will be teaching in place of me ...
Last Time

• We implemented subject-verb agreement:
 – *John eats/*eat cheese

Combine information from the subject NP and the verb

– NP information
 • e.g. John Person:3rd, Number: singular

– Verb inflectional endings

<table>
<thead>
<tr>
<th></th>
<th>Form</th>
<th>POS tag</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>eat</td>
<td>vb</td>
<td>*not 3rd person singular, present</td>
</tr>
<tr>
<td>2.</td>
<td>eats</td>
<td>vbz</td>
<td>3rd person singular, present</td>
</tr>
<tr>
<td>3.</td>
<td>ate</td>
<td>vbd</td>
<td>past</td>
</tr>
<tr>
<td>4.</td>
<td>eaten</td>
<td>vbn</td>
<td>past participle (passive, perfective)</td>
</tr>
<tr>
<td>5.</td>
<td>eating</td>
<td>vbg</td>
<td>gerund (progressive)</td>
</tr>
</tbody>
</table>
• Constraint table:
 - \textit{table of Person Number Tag possible combinations}
 - check(3, plural, vb).
 - check(3, plural, vbd).
 - check(3, singular, vbz).
 - check(3, singular, vbd).
\[g17.pl \]

- **Sentence rules:**

 \[
 \text{s(s(NP,VP))} \rightarrow \text{np(NP,Person,Number)}, \ \text{vp(VP,Tag)}, \\
 \{\text{check(Person,Number,Tag)}\}. \\
 \text{objrel_s(s(NP,VP))} \rightarrow \text{np(NP,Person,Number)}, \ \text{objrel_vp(VP,Tag)}, \\
 \{\text{check(Person,Number,Tag)}\}. \\
 \text{subjrel_s(s(NP,VP))} \rightarrow \text{empty_np(NP,Person,Number)}, \ \text{vp(VP,Tag)}, \\
 \{\text{check(Person,Number,Tag)}\}. \\
 \]

1. \{\text{check(Person,Number,Tag)}\} \quad \text{Prolog code}
2. \text{np(Parse,Person,Number)} \quad \text{nonterminal}
3. \text{vp(Parse,Tag)} \quad \text{nonterminal}
g17.pl

• VP rules (with updated calls to np):
 \[\text{vp(vp(V,NP),Tag)} \rightarrow \text{verb(V,Tag), np(NP,_,_).} \]
 \[\text{objrel_vp(vp(V,NP),Tag)} \rightarrow \text{verb(V,Tag), empty_np(NP,_,_).} \]

1. vp(Parse,Tag)
2. verb(Parse,Tag)
3. np(Parse,Person,Number)
4. empty_np(Parse,Person,Number)
g17.pl

• NP rules:

\[
\text{np(np(DT,NN),Person,Number) } \rightarrow \text{ dt(DT,Number), nn(NN,Number,Person).}
\]

\[
\text{np(np(np(DT,NN),SBAR),Person,Number) } \rightarrow \\
\quad \text{ dt(DT,Number), nn(NN,Number,Person), objrel_sbar(SBAR).}
\]

\[
\text{np(np(np(DT,NN),SBAR),Person,Number) } \rightarrow \\
\quad \text{ dt(DT,Number), nn(NN,Number,Person), subjrel_sbar(SBAR).}
\]

1. np(Parse,Person,Number)
2. nn(Parse,Number,Person)
g17.pl

• nn (common noun) rules:
 nn(nn(man),singular,3) --> [man].
 nn(nn(men),plural,3) --> [men].
 nn(nn(rat),singular,3) --> [rat].
 nn(nn(cat),singular,3) --> [cat].
 nn(nn(Root-Suffix),Number,Person) --> [Word],
 {atom_concat(Root,Suffix,Word),
 suffix(Number,[Suffix],[[]]),
 nn(_,singular,Person,[Root],[[]])}.
 nn(nn(cheese),mass,3) --> [cheese].
 suffix(plural) --> [s].

 nn(Parse,Number,Person)
g17.pl

- dt (determiner) rules:
 dt(dt(the),_) --> [the].
 dt(dt(a),singular) --> [a].
• verb rules:
 verb(vb(see),vb) --> [see].
 verb(vbz(sees),vbz) --> [sees].
 verb(vbg(seeing),vbg) --> [seeing].
 verb(vbd(saw),vbd) --> [saw].
 verb(vbn(seen),vbn) --> [seen].

 verb(vb(eat),vb) --> [eat].
 verb(vbz(eats),vbz) --> [eats].
 verb(vbg(eating),vbg) --> [eating].
 verb(vbd(ate),vbd) --> [ate].
 verb(vbn(eaten),vbn) --> [eaten].

 verb(vb(chase),vb) --> [chase].
 verb(vbz(chases),vbz) --> [chases].
 verb(vbg(chasing),vbg) --> [chasing].
 verb(vbd(chased),vbd) --> [chased].
 verb(vbn(chased),vbn) --> [chased].
• Other rules (not affected by subject-verb agreement):
 sbar(sbar(C,S)) --> complementizer(C), s(S).
 objrel_sbar(sbar(C,S)) --> complementizer(C), objrel_s(S).
 subjrel_sbar(sbar(C,S)) --> complementizer(C), subjrel_s(S).
 complementizer(c(that)) --> [that].
• Empty NP rule:
 empty_np(np(0),3,singular) --> []. % for now...

• We can't always assume those Person and Number values. Why?

• Examples:
 1. the rats/rat that ate the cheese
 2. the rats that eat/*eats the cheese
 3. the rat that *eat/eats the cheese

Let's fix g17.pl for the subject relative clause case
English Passivization

• 2nd extra argument verb Tag can also be useful in verb to verb constraints

\begin{align*}
v(vb(eat),vb) & \rightarrow [eat]. \\
v(vbp(eat),vbp) & \rightarrow [eat]. \\
v(vbz(eats),vbz) & \rightarrow [eats]. \\
v(vbg(eating),vbg) & \rightarrow [eating]. \\
v(vbd(ate),vbd) & \rightarrow [ate]. \\
v(vbn(eaten),vbn) & \rightarrow [eaten].
\end{align*}

Stanford parser:

\begin{verbatim}
(ROOT
 (S
 (NP (DT The) (NN sandwich)))
 (VP (VBD was)
 (VP (VBN eaten)))
 (. .))
\end{verbatim}

\textbf{Passive morphology}

1. the sandwich was eaten
2. *the sandwich was eat
3. *the sandwich was eats
4. *the sandwich was ate
5. *the sandwich was eating
English Passivization

• Stanford parser:

 S
 NP VP
 DT NN VBD VBN
 The sandwich was eaten

 S
 NP VP
 DT NN VBD ADJP
 The sandwich was ate

 S
 NP VP
 DT NN VBD VBG
 The sandwich was eating

 S
 NP VP
 DT NN VBD VBG
 The sandwich was eats

Passive morphology
1. the sandwich was eaten
2. *the sandwich was eat
3. *the sandwich was eats
4. *the sandwich was ate
5. *the sandwich was eating

Non-passive reading...
Let’s implement this passive morphology constraint,
 – i.e. passive auxiliary verb *be*
 requires following verb to have the past participle ending (*vbn, -en*)

\[
\text{vp}(\text{vp}(\text{Vpassive}, \text{vp}(V))) \rightarrow \text{v_passive}(\text{Vpassive}), \text{v}(V, \text{vbn}).
\]
\[
\text{v_passive}(\text{aux}(\text{was})) \rightarrow [\text{was}].
\]
\[
\text{v_passive}(\text{aux}(\text{were})) \rightarrow [\text{were}].
\]
English Passivization

• How about subject verb agreement for passive *be*?
 1. the sandwich was/*were eaten
 2. the sandwiches *was/were eaten