Administrivia

• Reminder
 – Homework 2 due next Tuesday
 – need help getting started?
Administrivia

• today
 – (3:30pm – 4:40pm)
 • lecture here in Comm 214
 – (4:45pm – 5:45pm) (EXTRA)
 • lab practice in Social Sciences Lab 224

• we’ll begin doing the homework exercises in the lab
Today’s Topics

• Grammar Rule Recursion
 – Prolog behavior

• Handout (from Tuesday)
 – Chapter 3: *More about Predicates*
 • Short Quiz #3 on Thursday
Grammar Rule Recursion

• **Recursion:**
 – A phrase may contain embedded inside another instance of the same phrase

• **Example:**
 – sentence with a relative clause
 – \([\text{Sbar} \ [\text{S} I \text{ saw} \ [\text{NP} \text{ the man} \ [\text{Sbar} \ [\text{S} \text{ attacked me}])))])
 – \([\text{Sbar} \ [\text{S} I \text{ saw} \ [\text{NP} \text{ the man} \ [\text{Sbar} \ [\text{S} \text{ attacked} \ [\text{NP} \text{ the dog} \ [\text{Sbar} \ [\text{S} \text{ attacked me }]])])]))])]
Grammar Rule Recursion

• Example:
 – assuming NP (not DP analysis) for simplicity...
 – \([_{NP} \ [_{NP} \text{John}] \text{'s mother}]\)
 – \([_{NP} \ [_{NP} \ [_{NP} \text{John}]]\text{'s mother]}\text{'}s \text{ cat}]\)

• DCG rules:
 – \(\text{np} \rightarrow \text{np}, \ [``\text{'s}'], \ n.\)
 – \(\text{n} \rightarrow [\text{mother}].\)
 – \(\text{n} \rightarrow [\text{cat}].\)
 – \(\text{np} \rightarrow [\text{john}].\)
Grammar Rule Recursion

• Prolog Computation Rule:
 – select “first” matching grammar rule each time we call a non-terminal
 – “first” = first line that matches

• DCG rules:
 - np --> np, ['"s"], n.
 - n --> [mother].
 - n --> [cat].
 - np --> [john].
 – Leads to infinite loop here...
Grammar Rule Recursion

• General Rule for writing recursive rules:
 – put recursive case last
 – i.e. place non-recursive rules for a non-terminal ahead of the recursive ones

• DCG rules:
 - np --> [john].
 - np --> np, [``s``], n.
 - n --> [mother].
 - n --> [cat].
 – no looping here...
Grammar Rule Recursion

• You’ll need it for homework 2...

• Examples:

 – \[[S\text{bar} [NP \text{Who}] [S [VP [V is] [NP[NP [DET a][N student]]]]]]\text{CONJ and}}[NP [DET a][N baseball fan]]]

 – \[[S\text{bar} [NP \text{Who}] [S [VP [V is] [NP[NP [DET a][N student]]]]]]\text{CONJ and}}[NP [\text{NEG not}]NP [DET a][N baseball fan]]]

• Consider a possible NP rule for conjoining two NPs:

 – \text{np} \rightarrow \text{np, conj, np}.

 – \text{conj} \rightarrow \text{[and]}.
More about Predicates

• 3.1 Other Types of Predicates: Adjectives, Predicate Nominals
 – (1) Shelby is small
 – (2) Shelby is a dog

• Semantics of *is* and *a*.
• Possibilities:
 – Meaningless
 – Non-interfering meaning - trivial meaning
More about Predicates

• 3.1 Other Types of Predicates: Adjectives, Predicate Nominals
 – (1) Shelby is small
 – (2) Shelby is a dog

• Semantics of (indefinite determiner) a.
 – (3) a dog bit me
 – (4) the/one/every dog bit me

 – quantifier?
More about Predicates

• Semantics of (indefinite determiner) a.
 – (3) a dog bit me
 – (4) the/one/every dog bit me
 – quantifier?
 – (3’) there exists a dog x such that $\text{bit}(x, \text{me})$
 – (4’) every: for each dog x, $\text{bit}(x, \text{me})$
More about Predicates

• Semantics of (indefinite determiner) *a*.
 – (3) a dog bit me
 – (3’) there exists a dog x such that $\text{bit}(x,\text{me})$

 – (2) Shelby is a dog
 – semantics involving “there exist a dog x”
More about Predicates

• Semantics of (indefinite determiner) a.
 – (3) a dog bit me
 – (3’) there exists a dog x such that $\text{bit}(x, \text{me})$

 – (2) Shelby is a dog
 – semantics involving “there exist a dog x”
 – No...
More about Predicates

• 3.2 Transitive Verbs
 – (5) Shelby saw Hannibal

• 3.3 Relative Clauses
 – (7) Hannibal is [who Shelby saw]

 – semantics of [who Shelby saw]
More about Predicates

• 3.3 Relative Clauses
 – (7) Hannibal is [who Shelby saw]
 – semantics of [who Shelby saw]
 – Shelby saw who saw(shelby,who).
 – (with logic variable) saw(shelby,X).
More about Predicates

• 3.4 Topicalization
 – (9) Shelby, Mary saw

• Semantics?

• Paraphrase (9) as:
 – (10) Shelby is who₁ Mary saw e₁
More about Predicates

• 3.5 Sub-atomic Semantics
• Event semantics
 – (11) Sylvia petted Shelby
• introduce an event variable, call it e
• Prolog-style, we can say:
 – event(e), agent(e,sylvia), patient(e,shelby).
• Notions like:
 – agent, patient, instrument etc. are called thematic roles
More about Predicates

- **lambda calculus:**
 - easy to introduce now...

- Example:

- *barks:* \(\lambda x.x \) barks \(barks(X) \).

 - Shelby barks
 - \([\lambda x.x \text{ barks}](\text{Shelby})\)
 - barks(\(X\)), \(X = \text{shelby}\)

- **Generalization:**
 - \([\lambda x.[\lambda y.y \text{ saw } x]\] \)
Quiz 3

• (3pts)
• Give lambda calculus semantics for:
 – likes
 – likes Mary
 – John likes Mary