LING 364: Introduction to Formal Semantics

Lecture 21

April 4th
Administrivia

• **Homework 3**
 – graded and returned
 – homework 4 should be coming back this week as well
Administrivia

• this Thursday
 – computer lab class
 – fun with quantifiers... homework 5
 – meet in SS 224
Today’s Topic

• Continue with
 – Reading Chapter 6: Quantifiers
 – Quiz 5 (end of class: postponed)
Last Time

- **Quantified NPs:**
 - “*something to do with indicating the quantity of something*”
 - *every* child, nobody
 - *two* dogs, *several* animals
 - *most* people

- **think of quantifiers as “properties-of-properties”**

- every_baby(P) is a proposition

- P: property

- every_baby(P) **true** for P=cried

- every_baby(P) **false** for P=jumped and P=swam

<table>
<thead>
<tr>
<th></th>
<th>every baby</th>
<th>exactly one baby</th>
<th>most babies</th>
</tr>
</thead>
<tbody>
<tr>
<td>cried</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>jumped</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>swam</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Generalized quantifiers:

sets of sets

property = set
Last Time

- **Defining every_baby(P)?**
 - (Montague-style)
 - every_baby(P) is shorthand for
 - \(\lambda P. [\forall X. [\text{baby}(X) \rightarrow P(X)]] \)
 - \(\forall : \text{for all (universal quantifier: logic symbol)} \)

- **Example:**
 - every baby walks
 - [\text{NP every baby}] [\text{vp walks}]
 - \(\lambda P. [\forall X. [\text{baby}(X) \rightarrow P(X)]] \) (walks)
 - \(\forall X. [\text{baby}(X) \rightarrow \text{walks}(X)] \)

- **Prolog-style:**
 - ?- \(\neg \neg (\text{baby}(X), \neg \neg \text{walks}(X)). \) “it’s not true that there is a baby (X) who doesn’t walk”
Conversion to Prolog form

- Show
 - $\forall X. [\text{baby}(X) \rightarrow \text{walks}(X)]$
- is equivalent to (can be translated into):
 - $?- \backslash + (\text{baby}(X), \backslash + \text{walks}(X))$.

We’re going to use the idea that

$\forall X \ P(X)$

is the same as

$\neg \exists X \ \neg P(X)$

let’s call this the “no exception” idea

$\exists = \text{“there exists” (quantifier)}$

(implicitly: all Prolog variables are existentially quantified variables)
Aside: *Truth Tables*

- **Logic of implication**
 - $P \rightarrow Q = \text{(truth value)}$
 - $\begin{array}{c|c|c}
 P & Q & P \rightarrow Q \\
 \hline
 T & T & T \\
 F & T & T \\
 F & F & T \\
 T & F & F \\
 \end{array}$
 - i.e. if P is true, Q must be true in order for $P \rightarrow Q$ to be true
 - if P is false, doesn’t matter what Q is, $P \rightarrow Q$ is true
 - conventionally written as:

$$
\begin{array}{c|c|c|c|c|c|c|c}
\neg P & v & Q & \neg P \vee Q & F & F & T & T \\
\hline
TF & T & T & T & T & T & T & T \\
FT & F & T & F & F & F & F & F \\
TF & T & T & T & T & T & T & T \\
\end{array}
$$

Hence, $P \rightarrow Q$ is equivalent to $\neg (P \vee Q)$
Aside: Truth Tables

- De Morgan’s Rule
- \(\neg(P \lor Q) = \neg P \land \neg Q \)

\[
\begin{array}{c|c|c}
\neg P & \land & \neg Q \\
\hline
\text{FT} & F & \text{FT} \\
\text{TF} & F & \text{FT} \\
\text{TF} & T & \text{TF} \\
\text{FT} & F & \text{FT} \\
\end{array}
\]

\[
\begin{array}{c|c|c}
P & \lor & Q \\
\hline
\text{T} & \text{T} & \text{T} \\
\text{F} & \text{T} & \text{T} \\
\text{F} & \text{F} & \text{F} \\
\text{T} & \text{T} & \text{F} \\
\end{array}
\]

\[
\begin{array}{c|c}
\neg(P \lor Q) \\
\hline
\text{F} \\
\text{F} \\
\text{T} \\
\text{F} \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\neg P & \land & \neg Q \\
\hline
\text{F} & \text{F} & \text{T} \\
\text{F} & \text{T} & \text{F} \\
\text{F} & \text{F} & \text{T} \\
\text{F} & \text{T} & \text{F} \\
\end{array}
\]

\[
\begin{array}{c|c}
\neg(P \lor Q) = \text{T} \text{ only when both } P \text{ and } Q \text{ are } \text{F} \\
\neg P \land \neg Q = \text{T} \text{ only when both } P \text{ and } Q \text{ are } \text{F} \\
\end{array}
\]

Hence, \(\neg(P \lor Q) \) is equivalent to \(\neg P \land \neg Q \)
Conversion into Prolog

Note: \(+ (baby(X), \,+walks(X))\) is Prolog for \(\forall X (baby(X) \rightarrow walks(X))\)

Steps:
- \(\forall X (baby(X) \rightarrow walks(X))\)
- \(\forall X (\neg baby(X) \vee walks(X))\)
 - (since \(P \rightarrow Q = \neg P \vee Q\), see truth tables from two slides ago)
- \(\neg \exists X \neg (\neg baby(X) \vee walks(X))\)
 - (since \(\forall X P(X) = \neg \exists X \neg P(X)\), no exception idea from 3 slides ago)
- \(\neg \exists X (baby(X) \land \neg walks(X))\)
 - (by De Morgan’s rule, see truth table from last slide)
- \(\neg (baby(X) \land \neg walks(X))\)
 - (can drop \(\exists X\) since all Prolog variables are basically existentially quantified variables)
- \(+ (baby(X) \land \,+walks(X))\)
 - (\(+ = \) Prolog negation symbol)
- \(+ (baby(X), \,+walks(X))\)
 - (\(, = \) Prolog conjunction symbol)
Last Time

- **Defining every_baby(P)?**
- **(Montague-style)** $\lambda P.[\forall X.\text{baby}(X) \rightarrow P(X)]$
- **(Barwise & Cooper-style)**
- think directly in terms of sets
- leads to another way of expressing the Prolog query

- **Example:** every baby walks
- $\{X: \text{baby}(X)\}$ set of all X such that baby(X) is true
- $\{X: \text{walks}(X)\}$ set of all X such that walks(X) is true

- **Subset relation** (\subseteq)
- $\{X: \text{baby}(X)\} \subseteq \{X: \text{walks}(X)\}$ the “baby” set must be a subset of the “walks” set

- Imagine a possible world:
 - baby(a).
 - baby(b).
 - baby(c).
 - walks(a).
 - walks(b).
 - walks(c).
 - walks(d).

 - $\{a,b,c\} \subseteq \{a,b,c,d\}$
 - baby \subseteq walks
Subset and Prolog

- How to express this as a Prolog query?
- Findall/3 queries:
 - `?- findall(X,baby(X),L1).`

 `L1` is the set of all babies in the database
 - `?- findall(X,walks(X),L2).`

 `L2` is the set of all individuals who walk

Also need a Prolog definition of the subset relation. For example:

```
subset([],_). % “empty set is a subset of anything”
subset([X|L1],L2) :- member(X,L2), subset(L1,L2).
member(X,[X|_]).
member(X,[_|L]) :- member(X,L).
```

Prolog Head-Tail List Notation:

- `[a,b,c]`

 `a` is the head of the list (the first element)
- `[b,c]` is the tail of the list (all but the first element)

we can write a list as follows:

- `[head | tail]`

 `[a | [b,c]]`

programmatically:

- `[X | L1]` will match `[a,b,c]`
 when `X = a, L1 = [b,c]`
Generalized Quantifiers

- **Example:** every baby walks
 - \(\{X: \text{baby}(X)\} \subseteq \{X: \text{walks}(X)\} \)
 - the “baby” set must be a subset of the “walks” set
- **Assume the following definitions are part of the database:**

 subset([],_).
 subset([X|L1],L2) :- member(X,L2), subset(L1,L2).
 member(X,[X|_]).
 member(X,[_|L]) :- member(X,L).
- **Prolog Query:**
 - \(?- \text{findall}(X, \text{baby}(X), L1), \text{findall}(X, \text{walks}(X), L2), \text{subset}(L1,L2).\)

- **True for world:**
 - baby(a).
 - baby(b).
 - walks(a).
 - walks(b).
 - walks(c).
 - \(L1 = [a,b] \)
 - \(L2 = [a,b,c] \)
 - \(?- \text{subset}(L1,L2) \text{ is true} \)

- **False for world:**
 - baby(a).
 - baby(b).
 - baby(d).
 - walks(a).
 - walks(b).
 - walks(c).
 - \(L1 = [a,b,d] \)
 - \(L2 = [a,b,c] \)
 - \(?- \text{subset}(L1,L2) \text{ is false} \)
Generalized Quantifiers

• **Example**: *every baby walks*
 - (Montague-style) \(\forall X (\text{baby}(X) \rightarrow \text{walks}(X)) \)
 - (Barwise & Cooper-style) \(\{X: \text{baby}(X)\} \subseteq \{X: \text{walks}(X)\} \)

• **how do we define every_baby(P)?**
 - (Montague-style) \(\lambda P. [\forall X (\text{baby}(X) \rightarrow P(X))] \)
 - (Barwise & Cooper-style) \(\{X: \text{baby}(X)\} \subseteq \{X: P(X)\} \)

• **how do we define every?**
 - (Montague-style) \(\lambda P_1. [\lambda P_2. [\forall X (P_1(X) \rightarrow P_2(X))]] \)
 - (Barwise & Cooper-style) \(\{X: P_1(X)\} \subseteq \{X: P_2(X)\} \)
Quantifiers

• how do we define the expression every?
• (Montague-style) $\lambda P_1.\lambda P_2. [\forall X (P_1(X) \rightarrow P_2(X))]$

Let’s look at computation in the lambda calculus...
• Example: every man likes John
 – **Word** | **Expression**
 – every | $\lambda P_1.\lambda P_2. [\forall X (P_1(X) \rightarrow P_2(X))]$
 – man | man
 – likes | $\lambda Y.\lambda X. [X \text{ likes } Y]$
 – John | John
• Syntax: $[S [NP [Q \text{ every}][N \text{ man}]] [VP [V \text{ likes}][NP \text{ John}]]]$
Quantifiers

- **Example:** \([S [NP [Q every][N man]][VP [v likes][NP John]]]\)

 - **Word Expression**
 - **every** \(\lambda P_1. [\lambda P_2. [\forall X (P_1(X) \rightarrow P_2(X))]\]
 - **man** man
 - **likes** \(\lambda Y. [\lambda X. [X \text{ likes } Y]]\)
 - **John** John

- **Steps:**
 \([Q \text{ every}][N \text{ man}] \rightarrow \lambda P_1. [\lambda P_2. [\forall X (P_1(X) \rightarrow P_2(X))]\](man)
 \([Q \text{ every}][N \text{ man}] \rightarrow \lambda P_2. [\forall X (\text{man}(X) \rightarrow P_2(X))]\]
 \([VP [v \text{ likes}][NP \text{ John}]] \rightarrow \lambda Y. [\lambda X. [X \text{ likes } Y]]\)(John)
 \([VP [v \text{ likes}][NP \text{ John}]] \rightarrow \lambda X. [X \text{ likes } John]\)
 \([S [NP [Q \text{ every}][N \text{ man}]]][VP [v \text{ likes}][NP \text{ John}]]\]

\(\lambda P_2. [\forall X (\text{man}(X) \rightarrow P_2(X))]\)(\(\lambda X. [X \text{ likes } John]\))
\(\forall X (\text{man}(X) \rightarrow \lambda X. [X \text{ likes } John](X))\)
Quantifiers

• **Example:** $\left[S \left[\begin{array}{l} \text{NP} \\ \text{Q every} \\ \text{N man} \end{array} \right] \left[\begin{array}{l} \text{VP} \\ \text{V likes} \\ \text{NP John} \end{array} \right] \right]$

 – **Word**
 – **every** $\vdash (P_1, \vdash P_2)$.
 – **man** $\text{man}(X)$.
 – **likes** $\text{likes}(X,Y)$.
 – **John** john

• **Steps (Prolog-style):**

 $\left[\begin{array}{l} \text{Q every} \\ \text{N man} \end{array} \right]$
 $\left[\begin{array}{l} \text{NP} \\ \text{Q every} \\ \text{N man} \end{array} \right]$

 $\left[\begin{array}{l} \text{V likes} \\ \text{NP John} \end{array} \right]$
 $\left[\begin{array}{l} \text{VP} \\ \text{V likes} \\ \text{NP John} \end{array} \right]$

 $\left[\begin{array}{l} \text{NP Q every} \\ \text{N man} \end{array} \right]$
 $\left[\begin{array}{l} \text{VP V likes} \\ \text{NP John} \end{array} \right]$

 $\left[\begin{array}{l} \text{S NP Q every} \\ \text{N man} \end{array} \right]$
 $\left[\begin{array}{l} \text{VP V likes} \\ \text{NP John} \end{array} \right]$

 $S = \vdash (\text{man}(X), \vdash \text{likes}(X, \text{john}))$

 (pass up saturated NP as the value for S)
Quantifiers

- **Example:** \[[_{S} [_{NP} [_{Q} every]_{N} man]]_{VP} [_{V} likes]_{NP} John] \]

 - **Word**
 - **Expression**
 - *every* findall(U,P1,L1), findall(V,P2,L2), subset(L1,L2).
 - *man* man(M).
 - *likes* likes(A,B).
 - *John* john

- **Steps:**
 \[[_{Q} every]_{N} man] = (findall(U,P1,L1), findall(V,P2,L2), subset(L1,L2)), N = man(M),
 arg(1,Q,FA1), arg(2,FA1,N), saturate1(FA1,X), saturate1(N,X).
 \[[_{NP} [_{Q} every]_{N} man]] = findall(X, man(X), L1), findall(V, P2, L2), subset(L1,L2)
 (pass up saturated Q as the value for the NP)

 \[[_{V} likes]_{NP} John] = V = likes(A,B), NP = john, saturate2(V, NP).

 \[[_{VP} [_{V} likes]_{NP} John]] = VP = likes(A,john)
 (pass up saturated V as the value for the VP)

 \[[_{NP} [_{Q} every]_{N} man]][_{VP} [_{V} likes]_{NP} John]]

 NP = (findall(X, man(X), L1), findall(V, P2, L2), subset(L1,L2)), VP = likes(A,john),
 arg(2,NP,C2), arg(1,C2,FA2), arg(2,FA2,VP), saturate1(FA2,Y), saturate1(VP,Z).
Quantifiers

- **Example:** \([S_{NP} [_{Q} every]_{N} man] [_{VP} _ _ _ _ _ likes]_{NP} John])\]
 - **Word**
 - **Expression**
 - every \(\text{findall}(U,P1,L1), \text{findall}(V,P2,L2), \text{subset}(L1,L2))\.
 - man \(\text{man}(M))\.
 - likes \(\text{likes}(A,B))\.
 - John \(\text{john})\.

- **Steps:**

\([_{NP} [_{Q} every]_{N} man] [_{VP} _ _ _ _ _ likes]_{NP} John])\]

 \[?- NP = (\text{findall}(X, \text{man}(X), L1), \text{findall}(V, P2, L2), \text{subset}(L1, L2)), \text{VP} = \text{likes}(A, \text{john}), \text{arg}(2, NP, C2), \text{arg}(1, C2, FA2), \text{arg}(2, FA2, VP), \text{saturate1}(FA2, Y), \text{saturate1}(VP, Z).\]

\([S_{NP} [_{Q} every]_{N} man] [_{VP} _ _ _ _ _ likes]_{NP} John])\]

\[S = \text{findall}(X, \text{man}(X), L1), \text{findall}(Y, \text{likes}(Y, \text{john}), L2), \text{subset}(L1, L2)\]

(pass up saturated **NP** as the value for **S**)
Names as Generalized Quantifiers

- In earlier lectures, we mentioned that names directly refer.
- Here is another idea.
- Conjunction
 - \(X \text{ and } Y \)
 - both \(X \) and \(Y \) have to be of the same type
 - in particular, semantically...
 - we want them to have the same semantic type
- what is the semantic type of every baby?

Example

- every baby and John likes ice cream
 - \([\text{NP} [\text{NP} \text{ every baby}] \text{ and } [\text{NP} \text{ John}] \text{ likes ice cream}]\)
 - every baby likes ice cream
 - \(\{X: \text{baby}(X)\} \subseteq \{Y: \text{likes}(Y, \text{ice cream})\} \)
 - John likes ice cream
 - \(??? \subseteq \{Y: \text{likes}(Y, \text{ice cream})\} \)
 - John \(\in \{Y: \text{likes}(Y, \text{ice cream})\} \)
 - want everything to be a set (to be consistent)
 - i.e. want to state something like
 - \(\{X: \text{baby}(X)\} \cup \{X: \text{john}(X)\} \subseteq \{Y: \text{likes}(Y, \text{ice cream})\} \)
 - note: set union (\(\cup \)) is the translation of “and”
Negative Polarity Items

• **Negative Polarity Items (NPIs)**

• **Examples:**
 - every, any

• **Constrained distribution:**
 - have to be *licensed* in some way
 - grammatical in a “negated environment” or “question”

• **Examples:**
 - (13a) Shelby won’t *ever* bite you
 - (13b) Nobody has *any* money

 - (14a) *Shelby will *ever* bite you
 - (14b) *Noah has any money

 - * = ungrammatical

 - (15a) Does Shelby *ever* bite?
 - (15b) Does Noah have *any* money?
Negative Polarity Items

• Inside an *if-clause*:
 – (16a) *If* Shelby *ever* bites you, I’ll put him up for adoption
 – (16b) *If* Noah has *any* money, he can buy some candy

• Inside an *every-NP*:
 – (17a) *Every* dog which has *ever* bitten a cat feels the admiration of other dogs
 – (17b) *Every* child who has *any* money is likely to waste it on candy

• Not inside a *some-NP*:
 – (17a) *Some* dog which has *ever* bitten a cat feels the admiration of other dogs
 – (17b) *Some* child who has *any* money is likely to waste it on candy

Not to be confused with free choice (FC) *any* (meaning: ∀): *any man can do that*