LING 364: Introduction to Formal Semantics

Lecture 19
March 20th
Administrivia

• Handout: Chapter 6
 – Quantifiers
 – hard topic
 – we’ll start on it today

• Read it for next Tuesday
 – Short Quiz 5
Administrivia

• We’ll review Homework 4 next time
 – a bit behind on grading...
Leftover from Last Lecture

• Example:
 – (29) Only John loves his mother
 – (29’) Only John doesn’t love his mother

• World 1 for (29) (=31):
 – loves(john,mother(john)).
 – also, no other facts in the database that would satisfy the query
 – ?- loves(X,mother(john)), \+ X=john.

• World 2 for (29) (=32):
 – loves(john,mother(john)).
 – also no other facts in the database that would satisfy the query
 – ?- loves(X,mother(X)), \+ X=john.

• Both Worlds are possible since (29) is ambiguous
• Which one is preferred?
Leftover from Last Lecture

• **Example:**
 - (29) Only John loves his mother
 - (29') Only John *doesn’t* love his mother

• **World 3 for (29’):**
 - `loves_not(john,mother(john)).`
 - also, no other facts in the database that would satisfy the query
 - `?- loves_not(X,mother(john)), \+ X=john.`

• **World 4 for (29’):**
 - `loves_not(john,mother(john)).`
 - also no other facts in the database that would satisfy the query
 - `?- loves_not(X,mother(X)), \+ X=john.`

• Both Worlds are possible since *(presumably)* (29’) is also ambiguous like (29)

• Which one is preferred?
Today’s Topic

• Chapter 6: Quantifiers
Quantifiers

• Not all noun phrases (NPs) are (by nature) directly referential like names
• **Quantifiers**:
 – “*something to do with indicating the quantity of something*”
• **Examples**:
 – every child
 – nobody
 – two dogs
 – several animals
 – most people

 – nobody has seen a unicorn
 – could simply means *something like (Prolog-style)*:
 – `?- findall(X,(person(X), seen(X,Y), unicorn(Y)),Set),length(Set,0).`
Quantifiers

• Recall: compositionality idea:
 – elements of a sentence combine in piecewise fashion to form an overall (propositional) meaning for the sentence

• Example:
 – (4) Every baby cried
 – **Word** **Meaning**
 – cried cried(X).
 – baby baby(X).
 – **every** ?
 – every baby cried proposition (True/False)
 – that can be evaluated in a given world
Quantifiers

- **Scenario (Possible World):**
 - suppose there are three babies...
 - baby(noah).
 - baby(merrill).
 - baby(dani).
 - all three cried
 - cried(noah).
 - cried(merrill).
 - cried(dani).
 - only Dani jumped
 - jumped(dani).
 - Noah and Dani swam
 - swam(noah).
 - swam(dani).

<table>
<thead>
<tr>
<th></th>
<th>every baby</th>
<th>exactly one baby</th>
<th>most babies</th>
</tr>
</thead>
<tbody>
<tr>
<td>cried</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>jumped</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>swam</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

- think of quantifiers as “properties-of-properties”
- every_baby(P) is a proposition
- P: property
- every_baby(P) true for P=cried
- every_baby(P) false for P=jumped and P=swam
Quantifiers

- **think of quantifiers as “properties-of-properties”**
 - every_baby(P) **true** for P=cried
 - every_baby(P) **false** for P=jumped and P=swam

- **Generalized Quantifiers** *(scary jargon alert!)*
 - the idea that quantified NPs represent sets of sets
 - *this idea is not as weird as it sounds*
 - we know
 - every_baby(P) is true for certain properties
 - view
 - every_baby(P) = set of all properties P for which this is true
 - in our scenario
 - every_baby(P) = {cried}
 - we know *cried* can also be view as a set itself
 - cried = set of individuals who cried
 - in our scenario
 - cried = {noah, merrill, dani}
Quantifiers

• **how do we define the expression every_baby(P)?**

• *(Montague-style)*

 every_baby(P) is shorthand for

 – for all individuals X, baby(X) \(\rightarrow\) P(X)

 \(\rightarrow:\) *if-then (implication: logic symbol)*

• written another way *(lambda calculus-style):*

 – \(\lambda P. [\forall X. [\text{baby}(X) \rightarrow P(X)]]\)

 \(\forall:\) *for all (universal quantifier: logic symbol)*

• **Example:**

 – every baby walks

 – for all individuals X, baby(X) \(\rightarrow\) walks(X)

 – more formally

 – \([_{NP} \text{every baby}] [_{VP} \text{walks}]\)

 – \(\lambda P. [\forall X. [\text{baby}(X) \rightarrow P(X)]](\text{walks})\)

 – \(\forall X. [\text{baby}(X) \rightarrow \text{walks}(X)]\)
Quantifiers

- **how do we define this Prolog-style?**

- **Example:**
 - every baby walks
 - $\left[_{NP} \text{every baby} \right] \left[_{VP} \text{walks} \right]
 - $\lambda P. \left(\forall X (\text{baby}(X) \rightarrow P(X)) \right)$(walks)
 - $\forall X (\text{baby}(X) \rightarrow \text{walks}(X))$

- **Possible World (Prolog database):**
 - `:- dynamic baby/1.`
 - `baby(a). baby(b).`
 - `walks(a). walks(b). walks(c).`
 - `individual(a). individual(b). individual(c).`

- **What kind of query would you write?**

- **One Possible Query (every means there are no exceptions):**
 - `?- \+ (\text{baby}(X), \+ \text{walks}(X)).` (NOTE: need a space between \+ and (here)
 - Yes (TRUE)

 - `?- \text{baby}(X), \+ \text{walks}(X).`
 - No

- `?- assert(baby(d)).`
 - `?- \text{baby}(X), \+ \text{walks}(X).`
 - `X = d ;`
 - Yes

using idea that $\forall X P(X)$ is the same as $\neg \exists X \neg P(X)$
\exists = “there exists” (quantifier)
(implicitly: all Prolog variables are existentially quantified variables)
Aside: Truth Tables

- **logic of implication**
- P -> Q = \((truth\ value)\)
- P -> Q =
- T T T
- F T T
- F F T
- T F F
- i.e. if P is true, Q must be true in order for P->Q to be true
- if P is false, doesn’t matter what Q is, P->Q is true
- conventionally written as:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P -> Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Hence, P->Q is equivalent to \(\neg P \lor Q\)

PvQ=F only when both P and Q are F

\(\neg P \lor Q=F\) only when P=T and Q=F

P->Q=F only when P=T and Q=F

\(\neg P\lor Q=F\) only when both P and Q are F
Aside: Truth Tables

- De Morgan’s Rule
- \(\neg(P \lor Q) = \neg P \land \neg Q \)

<table>
<thead>
<tr>
<th>(\neg P)</th>
<th>(\land)</th>
<th>(\neg Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT</td>
<td>F</td>
<td>FT</td>
</tr>
<tr>
<td>TF</td>
<td>F</td>
<td>FT</td>
</tr>
<tr>
<td>TF</td>
<td>T</td>
<td>TF</td>
</tr>
<tr>
<td>FT</td>
<td>F</td>
<td>FT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>v</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

\(\neg(P \lor Q) \) = T only when both P and Q are F

\(\neg P \land \neg Q \) = T only when both P and Q are F

Hence, \(\neg(P \lor Q) \) is equivalent to \(\neg P \land \neg Q \)
Conversion into Prolog

Note:

\[\neg (\text{baby}(X), \neg \text{walks}(X)) \]

is Prolog for \[\forall X (\text{baby}(X) \rightarrow \text{walks}(X)) \]

Steps:

1. \[\forall X (\text{baby}(X) \rightarrow \text{walks}(X)) \]
2. \[\forall X (\neg \text{baby}(X) \lor \text{walks}(X)) \]
 - (since \(P \rightarrow Q = \neg P \lor Q \), see truth tables from two slides ago)
3. \[\neg \exists X \neg (\neg \text{baby}(X) \lor \text{walks}(X)) \]
 - (since \(\forall X P(X) = \neg \exists X \neg P(X) \), no exception idea from 3 slides ago)
4. \[\neg \exists X (\text{baby}(X) \land \neg \text{walks}(X)) \]
 - (by De Morgan's rule, see truth table from last slide)
5. \[\neg (\text{baby}(X) \land \neg \text{walks}(X)) \]
 - (can drop \(\exists X \) since all Prolog variables are basically existentially quantified variables)
6. \[\neg (\text{baby}(X) \land \neg \text{walks}(X)) \]
 - (\(\neg \) = Prolog negation symbol)
7. \[\neg (\text{baby}(X), \neg \text{walks}(X)) \]
 - (\(\neg \) = Prolog conjunction symbol)
Quantifiers

- **how do we define this Prolog-style?**
- **Example:**
 - every baby walks
 - \([_{NP} \text{every baby}][_{VP} \text{walks}]\)
 - \(\forall P. [\forall X. [\text{baby}(X) \rightarrow P(X)]](\text{walks})\)
 - \(\forall X. [\text{baby}(X) \rightarrow \text{walks}(X)]\)
- **Another Possible World (Prolog database):**
 - \(- \text{dynamic baby}/1.\)
 - \(- \text{dynamic walks}/1.\)
 - \(^\% \text{no facts} \quad (^\% = \text{comment})\)
- **Does \(?- \lnot (\text{baby}(X), \lnot \text{walks}(X)). \text{still work?}\)**
 - **Yes because**
 - \(?- \text{baby}(X), \lnot \text{walks}(X).\)
 - \(\text{No}\)
 - cannot be satisfied
Quantifiers

• how do we define the expression every_baby(P)?
 • (Montague-style)
 every_baby(P) is shorthand for
 – \(\lambda P. [\forall x. \text{baby}(x) \rightarrow P(x)] \)

• (Barwise & Cooper-style)
 • think directly in terms of sets
 • leads to another way of expressing the Prolog query

• Example: every baby walks
 • \{X: \text{baby}(X)\} set of all X such that baby(X) is true
 • \{X: \text{walks}(X)\} set of all X such that walks(X) is true

• Subset relation \((\subseteq) \)
 • \{X: \text{baby}(X)\} \subseteq \{X: \text{walks}(X)\} the “baby” set must be a subset of the “walks” set
Quantifiers

- (Barwise & Cooper-style)
 - think directly in terms of sets
 - *leads to another way of expressing the Prolog query*

- **Example**: every baby walks
 - \(\{X: \text{baby}(X)\} \subseteq \{X: \text{walks}(X)\} \)
 the “baby” set must be a subset of the “walks” set

- **How to express this as a Prolog query?**
 - **Queries**:
 - `?- findall(X,baby(X),L1).`
 L1 is the set of all babies in the database
 - `?- findall(X,walks(X),L2).`
 L2 is the set of all individuals who walk

| Need a Prolog definition of the subset relation. This one, for example: |
| subset([],_). |
subset([X	L1],L2) :- member(X,L2), subset(L1,L2).
member(X,[X	_]).
member(X,[_	L]) :- member(X,L).
Quantifiers

- **Example:** every baby walks
 - \(\{X: \text{baby}(X)\} \subseteq \{X: \text{walks}(X)\}\) the “baby” set must be a subset of the “walks” set

- **Assume the following definitions are part of the database:**

 \[
 \begin{align*}
 \text{subset}([],_) & . \\
 \text{subset}([X|_],L) & :- \text{member}(X,L). \\
 \text{member}(X,[X|_]) & . \\
 \text{member}(X,[_|L]) & :- \text{member}(X,L).
 \end{align*}
 \]

- **Prolog Query:**
 - `?- findall(X,baby(X),L1), findall(X,walks(X),L2), subset(L1,L2).`

- **True for world:**
 - baby(a).
 - baby(b).
 - walks(a).
 - walks(b).
 - walks(c).

 \[
 \begin{align*}
 L1 & = [a,b] \\
 L2 & = [a,b,c]
 \end{align*}
 \]

 `- subset(L1,L2) is true`

- **False for world:**
 - baby(a).
 - baby(b).
 - baby(d).
 - walks(a).
 - walks(b).
 - walks(c).

 \[
 \begin{align*}
 L1 & = [a,b,d] \\
 L2 & = [a,b,c]
 \end{align*}
 \]

 `- subset(L1,L2) is false`