C SC 620
Advanced Topics in Natural Language Processing

Lecture 17
3/25
Reading List

- Reading list:
 - 12. Correlational Analysis and Mechanical Translation. Ceccato, S.
 - 16. Automatic Translation and the Concept of Sublanguage. Lehrberger, J.
 - 17. The Proper Place of Men and Machines in Language Translation. Kay, M.
1. The Place of Automatic Translation (AT) Among Problems of Wider Range

Observation:
- Too broad: quite naturally broken down into a number of simpler tasks which are to be solved autonomously (first)
- Too narrow: quite naturally included into broader problems which dominate AT

Presuppositions:
- Knowledge of the language pairs
- Understanding the context
- Knowing how to accumulate translation experience to gradually raise the quality
1.1 The Linguistic Problem

Knowledge of Language means ability to do

- Analysis: T (text) \rightarrow M (meaning), and
- Synthesis: M \rightarrow T

Notation for specifying meaning (Semantic Language)

Example (invariance of meaning under translation):

» We fulfilled your task easily
» What you had set us as a task was done by us with ease
» It was easy for us to fulfill your task
» Fulfilling your task turned out to be easy for us

• Broadness
 – The three AT tasks are also tasks of general linguistics, moreover cardinal problems of any serious theory of language
 • If linguistics had more or less complete solutions to offer here, only some minor (tech) problems would have to be solved to make practical AT possible (*Failure of linguistics*)
 – Also important for other applications of language information processing
 • e.g. information retrieval, automatic editing and abstracting (summarization), man-machine communication

• Conclusion 1
 – Any serious progress in AT depends on progress in linguistics on the three tasks
 – Progress in linguistics possible only if linguistics is transformed on the basis of new approaches and conceptions, in close connection with mathematics

• 1.2 The Gnostical Problem
 – Knowledge of language does not guarantee good translation. Knowledge of situational context also needed.

• A. Different Meanings Correspond to the Same Situation
 – The largest city of the USSR
 – The capital of the USSR
Kulagina, O. and I. Mel’cuk

• B. The Same Meaning Corresponds to Different Situations
 – To this purpose he used the book
 – To do this he made use of the book
 – Situations:
 • Read a book to get information or divert oneself
 • Put a book on a ream of sheets to prevent the wind from scattering them
 • Throw a book at a dog to drive the animal away

- Knowledge of Situation needed
- (1) Multiple meanings, each of which refers to a certain situation, all of them different
 - Examples:
 - The box is in the pen (Bar-Hillel)
 - Pen: enclosure
 - Pen: writing instrument
 - Slow neutrons and protons (Bar-Hillel)
 - Wide and narrow scope for slow
Knowledge of Situation needed

(1) Single meaning, unique situation (a knock at the door), language-particular

- Example:
 - Come in! (Russian)
 - Forward! (Italian)
Kulagina, O. and I. Mel’cuk

• Conclusion 2
 – Progress in AT dependent on progress in the study of human thinking and cognition

• 1.3 The Problem of Automating Researchers’ Activity

• AT System:
 – Algorithms
 • T->M, M->T, M->S (situation), S->M
 – Data (for each language) - dynamic
 • Lexical
 • Syntactic
 • Stylistic
 • Distribution and functioning of all items in the whole range of possible contexts
 • Rules of correspondence between these items
 • Encyclopedia
Kulagina, O. and I. Mel’cuk

- Start with imperfect system
- Need to organize algorithms and data and have maintenance devices that accept man-made corrections and learn by itself
- Need systems to automatically collect and classify language data
Kulagina, O. and I. Mel’cuk

• Conclusion 3
 – Practical solution of AT depends on our ability to automate the scientific activities of humans

• 2 Principal Components of an AT System
• 2.1 Analysis Algorithm
• 2.1.1 Lexico-morphological Analysis
 – “Morphs”
 – Word form -> Information (distribution and syntactic functions, semantic information)
• 2.1.2 Syntactic Analysis
 – Sentence -> syntactic tree(s)
 – Morphological ambiguities may be resolved here
2.1.3 Semantic Analysis
- Syntactic tree -> semantic structure (SEMS)
- Possibly disambiguate syntactic trees here
- Representation
 - Example: *He drinks warm tea*
Kulagina, O. and I. Mel’cuk

- Synthesis
 - (Situation level excluded)
 - Replace semantic nodes
 - 1-to-1
 - Several nodes -> 1 node
 - 1 node -> several nodes
 - ‘Rush along’ -> very/great + fast + move
 - Syntactic node -> single/several semantic nodes
 - Semantic items to syntactic items
 - Success + great degree -> dramatic success
 - Staff -> staff [lab], personnel [hospital], crew [tank or ship],
 team [football], troupe [theater]
2.2 Semantic Dictionary

Text -> meaning: simplification

Basic (English)
- A few hundred items (plus technical items)
- Other words must be expressible in Basic by means of non-ambiguous and readily understandable paraphrases

Merge two Basics into one
- Semantic Language, AT Interlingua

Multiple stages: Russian of degree N

• 2.3 Synthesis Algorithm
 – (Exclude Semantic Synthesis)
 – Syntactic Synthesis
 • By Primitive Word Groups (PWG)
 – Head and dependents
 – Verb, noun, adjective and adverb groups
 • Assemble PWGs into Definitive (Terminal) Word Groups (DWG)
 – Look at master and place PWG
 – Finite verb, subject, object, circumstantial complements, adverb and nominal/infinitive complement groups
 • Arrange DWGs to ensure acceptable word order
 – Preference rules at work

Figure 13.3
1_E) John is easy to please ⇒ (1_E)
2_E) John is eager to please ⇒ (2_E)
Kulagina, O. and I. Mel’cuk

Figure 13.4
3e) They are flying planes
Kulagina, O. and I. Mel’cuk

Figure 13.5
Automatic text analysis is a new discipline $\langle 4|u \rangle$ or $\langle 4|v \rangle$
Kulagina, O. and I. Mel’cuk

Figure 13.6
3. Semantic analysis

Figure 13.7
(‘To cause John be pleased is easy’)

Figure 13.8
(‘John wishes very [much] that he (John) causes [someone] to be pleased’)
Kulagina, O. and I. Mel’cuk

Figure 13.9
(‘They are airplanes, and [these] airplanes [are] flying’)

Figure 13.10
(4'): The syntactic tree is dropped by semantic analysis because of the semantic unacceptability of 'automatic text' (only devices, or actions and the like, can be 'automatic').

('Automaton[a] analyze[s] text[s]—is new discipline').